2263 Repositories
Python sub-bit-neural-networks Libraries
How to use TensorLayer
How to use TensorLayer While research in Deep Learning continues to improve the world, we use a bunch of tricks to implement algorithms with TensorLay
AutoML library for deep learning
Official Website: autokeras.com AutoKeras: An AutoML system based on Keras. It is developed by DATA Lab at Texas A&M University. The goal of AutoKeras
Latex code for making neural networks diagrams
PlotNeuralNet Latex code for drawing neural networks for reports and presentation. Have a look into examples to see how they are made. Additionally, l
A Python toolbox to create adversarial examples that fool neural networks in PyTorch, TensorFlow, and JAX
Foolbox Native: Fast adversarial attacks to benchmark the robustness of machine learning models in PyTorch, TensorFlow, and JAX Foolbox is a Python li
Neural network graphs and training metrics for PyTorch, Tensorflow, and Keras.
HiddenLayer A lightweight library for neural network graphs and training metrics for PyTorch, Tensorflow, and Keras. HiddenLayer is simple, easy to ex
This script runs neural style transfer against the provided content image.
Neural Style Transfer Content Style Output Description: This script runs neural style transfer against the provided content image. The content image m
Neural Scene Flow Fields using pytorch-lightning, with potential improvements
nsff_pl Neural Scene Flow Fields using pytorch-lightning. This repo reimplements the NSFF idea, but modifies several operations based on observation o
Keras Implementation of Neural Style Transfer from the paper "A Neural Algorithm of Artistic Style"
Neural Style Transfer & Neural Doodles Implementation of Neural Style Transfer from the paper A Neural Algorithm of Artistic Style in Keras 2.0+ INetw
DeepFaceLab fork which provides IPython Notebook to use DFL with Google Colab
DFL-Colab — DeepFaceLab fork for Google Colab This project provides you IPython Notebook to use DeepFaceLab with Google Colaboratory. You can create y
Lab Materials for MIT 6.S191: Introduction to Deep Learning
This repository contains all of the code and software labs for MIT 6.S191: Introduction to Deep Learning! All lecture slides and videos are available
Tutorials, assignments, and competitions for MIT Deep Learning related courses.
MIT Deep Learning This repository is a collection of tutorials for MIT Deep Learning courses. More added as courses progress. Tutorial: Deep Learning
TensorFlow Tutorials with YouTube Videos
TensorFlow Tutorials Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction These tutorials are intended for beginne
DeepHyper: Scalable Asynchronous Neural Architecture and Hyperparameter Search for Deep Neural Networks
What is DeepHyper? DeepHyper is a software package that uses learning, optimization, and parallel computing to automate the design and development of
Use unsupervised and supervised learning to predict stocks
AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n
Introducing neural networks to predict stock prices
IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o
A Python module for clustering creators of social media content into networks
sm_content_clustering A Python module for clustering creators of social media content into networks. Currently supports identifying potential networks
Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy
Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy
generate-2D-quadrilateral-mesh-with-neural-networks-and-tree-search
generate-2D-quadrilateral-mesh-with-neural-networks-and-tree-search This repository contains single-threaded TreeMesh code. I'm Hua Tong, a senior stu
Reference PyTorch implementation of "End-to-end optimized image compression with competition of prior distributions"
PyTorch reference implementation of "End-to-end optimized image compression with competition of prior distributions" by Benoit Brummer and Christophe
Official repository for the paper "GN-Transformer: Fusing AST and Source Code information in Graph Networks".
GN-Transformer AST This is the official repository for the paper "GN-Transformer: Fusing AST and Source Code information in Graph Networks". Data Prep
Code and experiments for "Deep Neural Networks for Rank Consistent Ordinal Regression based on Conditional Probabilities"
corn-ordinal-neuralnet This repository contains the orginal model code and experiment logs for the paper "Deep Neural Networks for Rank Consistent Ord
TYolov5: A Temporal Yolov5 Detector Based on Quasi-Recurrent Neural Networks for Real-Time Handgun Detection in Video
TYolov5: A Temporal Yolov5 Detector Based on Quasi-Recurrent Neural Networks for Real-Time Handgun Detection in Video Timely handgun detection is a cr
Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).
Fisher Induced Sparse uncHanging (FISH) Mask This repo contains the code for Fisher Induced Sparse uncHanging (FISH) Mask training, from "Training Neu
Bio-Computing Platform Featuring Large-Scale Representation Learning and Multi-Task Deep Learning “螺旋桨”生物计算工具集
English | 简体中文 Latest News 2021.10.25 Paper "Docking-based Virtual Screening with Multi-Task Learning" is accepted by BIBM 2021. 2021.07.29 PaddleHeli
Unofficial implementation of Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segmentation
Point-Unet This is an unofficial implementation of the MICCAI 2021 paper Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segment
A multi-platform GUI for bit-based analysis, processing, and visualization
A multi-platform GUI for bit-based analysis, processing, and visualization
Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks
Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks This is a Pytorch-Lightning implementation of the paper "Self-s
GemNet model in PyTorch, as proposed in "GemNet: Universal Directional Graph Neural Networks for Molecules" (NeurIPS 2021)
GemNet: Universal Directional Graph Neural Networks for Molecules Reference implementation in PyTorch of the geometric message passing neural network
TensorFlow GNN is a library to build Graph Neural Networks on the TensorFlow platform.
TensorFlow GNN This is an early (alpha) release to get community feedback. It's under active development and we may break API compatibility in the fut
[ ICCV 2021 Oral ] Our method can estimate camera poses and neural radiance fields jointly when the cameras are initialized at random poses in complex scenarios (outside-in scenes, even with less texture or intense noise )
GNeRF This repository contains official code for the ICCV 2021 paper: GNeRF: GAN-based Neural Radiance Field without Posed Camera. This implementation
Pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks."
alpha-GAN Unofficial pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks." arXi
Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models
Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models, under review at ICLR 2017 requirements: T
Unrolled Generative Adversarial Networks
Unrolled Generative Adversarial Networks Luke Metz, Ben Poole, David Pfau, Jascha Sohl-Dickstein arxiv:1611.02163 This repo contains an example notebo
Stacked Generative Adversarial Networks
Stacked Generative Adversarial Networks This repository contains code for the paper "Stacked Generative Adversarial Networks", CVPR 2017. Part of the
Code for training and evaluation of the model from "Language Generation with Recurrent Generative Adversarial Networks without Pre-training"
Language Generation with Recurrent Generative Adversarial Networks without Pre-training Code for training and evaluation of the model from "Language G
Generating Images with Recurrent Adversarial Networks
Generating Images with Recurrent Adversarial Networks Python (Theano) implementation of Generating Images with Recurrent Adversarial Networks code pro
Create images and texts with the First Order Generative Adversarial Networks
First Order Divergence for training GANs This repository contains code accompanying the paper First Order Generative Advesarial Netoworks The majority
A stable algorithm for GAN training
DRAGAN (Deep Regret Analytic Generative Adversarial Networks) Link to our paper - https://arxiv.org/abs/1705.07215 Pytorch implementation (thanks!) -
Deep Convolutional Generative Adversarial Networks
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks Alec Radford, Luke Metz, Soumith Chintala All images in t
PyTorch implementation for ComboGAN
ComboGAN This is our ongoing PyTorch implementation for ComboGAN. Code was written by Asha Anoosheh (built upon CycleGAN) [ComboGAN Paper] If you use
Generative Adversarial Networks for High Energy Physics extended to a multi-layer calorimeter simulation
CaloGAN Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative Adversarial Networks. This repository c
Bayesian Generative Adversarial Networks in Tensorflow
Bayesian Generative Adversarial Networks in Tensorflow This repository contains the Tensorflow implementation of the Bayesian GAN by Yunus Saatchi and
Pytorch implementation AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks
AttnGAN Pytorch implementation for reproducing AttnGAN results in the paper AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative
Single/multi view image(s) to voxel reconstruction using a recurrent neural network
3D-R2N2: 3D Recurrent Reconstruction Neural Network This repository contains the source codes for the paper Choy et al., 3D-R2N2: A Unified Approach f
Source code release of the paper: Knowledge-Guided Deep Fractal Neural Networks for Human Pose Estimation.
GNet-pose Project Page: http://guanghan.info/projects/guided-fractal/ UPDATE 9/27/2018: Prototxts and model that achieved 93.9Pck on LSP dataset. http
Tensorflow Implementation of the paper "Spectral Normalization for Generative Adversarial Networks" (ICML 2017 workshop)
tf-SNDCGAN Tensorflow implementation of the paper "Spectral Normalization for Generative Adversarial Networks" (https://www.researchgate.net/publicati
TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently.
Adversarial Chess TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently. Requirements To run
Training, generation, and analysis code for Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics
Location-Aware Generative Adversarial Networks (LAGAN) for Physics Synthesis This repository contains all the code used in L. de Oliveira (@lukedeo),
A TensorFlow Implementation of "Deep Multi-Scale Video Prediction Beyond Mean Square Error" by Mathieu, Couprie & LeCun.
Adversarial Video Generation This project implements a generative adversarial network to predict future frames of video, as detailed in "Deep Multi-Sc
SalGAN: Visual Saliency Prediction with Generative Adversarial Networks
SalGAN: Visual Saliency Prediction with Adversarial Networks Junting Pan Cristian Canton Ferrer Kevin McGuinness Noel O'Connor Jordi Torres Elisa Sayr
Train CPPNs as a Generative Model, using Generative Adversarial Networks and Variational Autoencoder techniques to produce high resolution images.
cppn-gan-vae tensorflow Train Compositional Pattern Producing Network as a Generative Model, using Generative Adversarial Networks and Variational Aut
Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks
MGANs Training & Testing code (torch), pre-trained models and supplementary materials for "Precomputed Real-Time Texture Synthesis with Markovian Gene
Fully Convolutional Refined Auto Encoding Generative Adversarial Networks for 3D Multi Object Scenes
Fully Convolutional Refined Auto-Encoding Generative Adversarial Networks for 3D Multi Object Scenes This repository contains the source code for Full
Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks
pix2vox [Demonstration video] Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks. Generated samples Single-category generation M
StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks
StackGAN Pytorch implementation Inception score evaluation StackGAN-v2-pytorch Tensorflow implementation for reproducing main results in the paper Sta
A simple interface for editing natural photos with generative neural networks.
Neural Photo Editor A simple interface for editing natural photos with generative neural networks. This repository contains code for the paper "Neural
Interactive Image Generation via Generative Adversarial Networks
iGAN: Interactive Image Generation via Generative Adversarial Networks Project | Youtube | Paper Recent projects: [pix2pix]: Torch implementation for
A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations.
IllustrationGAN A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations. Generated Images
Learning Chinese Character style with conditional GAN
zi2zi: Master Chinese Calligraphy with Conditional Adversarial Networks Introduction Learning eastern asian language typefaces with GAN. zi2zi(字到字, me
Tensorflow implementation of "BEGAN: Boundary Equilibrium Generative Adversarial Networks"
BEGAN in Tensorflow Tensorflow implementation of BEGAN: Boundary Equilibrium Generative Adversarial Networks. Requirements Python 2.7 or 3.x Pillow tq
Code and hyperparameters for the paper "Generative Adversarial Networks"
Generative Adversarial Networks This repository contains the code and hyperparameters for the paper: "Generative Adversarial Networks." Ian J. Goodfel
Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.
Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.
🔎 Super-scale your images and run experiments with Residual Dense and Adversarial Networks.
Image Super-Resolution (ISR) The goal of this project is to upscale and improve the quality of low resolution images. This project contains Keras impl
Collection of generative models in Tensorflow
tensorflow-generative-model-collections Tensorflow implementation of various GANs and VAEs. Related Repositories Pytorch version Pytorch version of th
Build Graph Nets in Tensorflow
Graph Nets library Graph Nets is DeepMind's library for building graph networks in Tensorflow and Sonnet. Contact [email protected] for comments a
Hummingbird compiles trained ML models into tensor computation for faster inference.
Hummingbird Introduction Hummingbird is a library for compiling trained traditional ML models into tensor computations. Hummingbird allows users to se
PyClustering is a Python, C++ data mining library.
pyclustering is a Python, C++ data mining library (clustering algorithm, oscillatory networks, neural networks). The library provides Python and C++ implementations (C++ pyclustering library) of each algorithm or model. C++ pyclustering library is a part of pyclustering and supported for Linux, Windows and MacOS operating systems.
MiniSom is a minimalistic implementation of the Self Organizing Maps
MiniSom Self Organizing Maps MiniSom is a minimalistic and Numpy based implementation of the Self Organizing Maps (SOM). SOM is a type of Artificial N
Computations and statistics on manifolds with geometric structures.
Geomstats Code Continuous Integration Code coverage (numpy) Code coverage (autograd, tensorflow, pytorch) Documentation Community NEWS: Geomstats is r
Sequence to Sequence (seq2seq) Recurrent Neural Network (RNN) for Time Series Forecasting
Sequence to Sequence (seq2seq) Recurrent Neural Network (RNN) for Time Series Forecasting Note: You can find here the accompanying seq2seq RNN forecas
An implementation of a sequence to sequence neural network using an encoder-decoder
Keras implementation of a sequence to sequence model for time series prediction using an encoder-decoder architecture. I created this post to share a
This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning].
CG3 This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning]. R
Official implementation for "Image Quality Assessment using Contrastive Learning"
Image Quality Assessment using Contrastive Learning Pavan C. Madhusudana, Neil Birkbeck, Yilin Wang, Balu Adsumilli and Alan C. Bovik This is the offi
Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder
Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder
DeepMReye: magnetic resonance-based eye tracking using deep neural networks
DeepMReye: magnetic resonance-based eye tracking using deep neural networks
Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks
SSRL-for-image-classification Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks
Implementation of the master's thesis "Temporal copying and local hallucination for video inpainting".
Temporal copying and local hallucination for video inpainting This repository contains the implementation of my master's thesis "Temporal copying and
Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization
Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization This repository contains the source code for the paper (link wi
Generating Band-Limited Adversarial Surfaces Using Neural Networks
Generating Band-Limited Adversarial Surfaces Using Neural Networks This is the official repository of the technical report that was published on arXiv
Fast Axiomatic Attribution for Neural Networks (NeurIPS*2021)
Fast Axiomatic Attribution for Neural Networks This is the official repository accompanying the NeurIPS 2021 paper: R. Hesse, S. Schaub-Meyer, and S.
Predict halo masses from simulations via graph neural networks
HaloGraphNet Predict halo masses from simulations via Graph Neural Networks. Given a dark matter halo and its galaxies, creates a graph with informati
Implementation of neural class expression synthesizers
NCES Implementation of neural class expression synthesizers (NCES) Installation Clone this repository: https://github.com/ConceptLengthLearner/NCES.gi
Pansharpening by convolutional neural networks in the full resolution framework
Z-PNN: Zoom Pansharpening Neural Network Pansharpening by convolutional neural networks in the full resolution framework is a deep learning method for
Learning a mapping from images to psychological similarity spaces with neural networks.
LearningPsychologicalSpaces v0.1: v1.1: v1.2: v1.3: v1.4: v1.5: The code in this repository explores learning a mapping from images to psychological s
Official implementation of Meta-StyleSpeech and StyleSpeech
Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation Dongchan Min, Dong Bok Lee, Eunho Yang, and Sung Ju Hwang This is an official code
This is a Python implementation of the HMRF algorithm on networks with categorial variables.
Salad Salad is an Open Source Python library to segment tissues into different biologically relevant regions based on Hidden Markov Random Fields. The
MASS (Mueen's Algorithm for Similarity Search) - a python 2 and 3 compatible library used for searching time series sub-sequences under z-normalized Euclidean distance for similarity.
Introduction MASS allows you to search a time series for a subquery resulting in an array of distances. These array of distances enable you to identif
Short and long time series classification using convolutional neural networks
time-series-classification Short and long time series classification via convolutional neural networks In this project, we present a novel framework f
sktime companion package for deep learning based on TensorFlow
NOTE: sktime-dl is currently being updated to work correctly with sktime 0.6, and wwill be fully relaunched over the summer. The plan is Refactor and
ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels
ROCKET + MINIROCKET ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge D
DoWhy is a Python library for causal inference that supports explicit modeling and testing of causal assumptions. DoWhy is based on a unified language for causal inference, combining causal graphical models and potential outcomes frameworks.
DoWhy | An end-to-end library for causal inference Amit Sharma, Emre Kiciman Introducing DoWhy and the 4 steps of causal inference | Microsoft Researc
A toolbox to iNNvestigate neural networks' predictions!
iNNvestigate neural networks! Table of contents Introduction Installation Usage and Examples More documentation Contributing Releases Introduction In
AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention
AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention. AdaNet buil
An open source AutoML toolkit for automate machine learning lifecycle, including feature engineering, neural architecture search, model compression and hyper-parameter tuning.
NNI Doc | 简体中文 NNI (Neural Network Intelligence) is a lightweight but powerful toolkit to help users automate Feature Engineering, Neural Architecture
Neural Architecture Search Powered by Swarm Intelligence 🐜
Neural Architecture Search Powered by Swarm Intelligence 🐜 DeepSwarm DeepSwarm is an open-source library which uses Ant Colony Optimization to tackle
🚪✊Knock Knock: Get notified when your training ends with only two additional lines of code
Knock Knock A small library to get a notification when your training is complete or when it crashes during the process with two additional lines of co
EZ graph is an easy to use AI solution that allows you to make and train your neural networks without a single line of code.
EZ-Graph EZ Graph is a GUI that allows users to make and train neural networks without writing a single line of code. Requirements python 3 pandas num
High-resolution networks and Segmentation Transformer for Semantic Segmentation
High-resolution networks and Segmentation Transformer for Semantic Segmentation Branches This is the implementation for HRNet + OCR. The PyTroch 1.1 v
ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation
ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation This repository contains the source code of our paper, ESPNet (acc
Implementation for paper LadderNet: Multi-path networks based on U-Net for medical image segmentation
Implementation for paper LadderNet: Multi-path networks based on U-Net for medical image segmentation This implementation is based on orobix implement