150 Repositories
Python timeseries-forecasting Libraries
The source code and data of the paper "Instance-wise Graph-based Framework for Multivariate Time Series Forecasting".
IGMTF The source code and data of the paper "Instance-wise Graph-based Framework for Multivariate Time Series Forecasting". Requirements The framework
Merlion: A Machine Learning Framework for Time Series Intelligence
Merlion: A Machine Learning Library for Time Series Table of Contents Introduction Installation Documentation Getting Started Anomaly Detection Foreca
Merlion: A Machine Learning Framework for Time Series Intelligence
Merlion is a Python library for time series intelligence. It provides an end-to-end machine learning framework that includes loading and transforming data, building and training models, post-processing model outputs, and evaluating model performance. I
The GitHub repository for the paper: “Time Series is a Special Sequence: Forecasting with Sample Convolution and Interaction“.
SCINet This is the original PyTorch implementation of the following work: Time Series is a Special Sequence: Forecasting with Sample Convolution and I
ETNA is an easy-to-use time series forecasting framework.
ETNA is an easy-to-use time series forecasting framework. It includes built in toolkits for time series preprocessing, feature generation, a variety of predictive models with unified interface - from classic machine learning to SOTA neural networks, models combination methods and smart backtesting. ETNA is designed to make working with time series simple, productive, and fun.
[ICCV'21] Official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations
CrowdNav with Social-NCE This is an official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations by
LONG-TERM SERIES FORECASTING WITH QUERYSELECTOR – EFFICIENT MODEL OF SPARSEATTENTION
Query Selector Here you can find code and data loaders for the paper https://arxiv.org/pdf/2107.08687v1.pdf . Query Selector is a novel approach to sp
[CVPR 2021] Forecasting the panoptic segmentation of future video frames
Panoptic Segmentation Forecasting Colin Graber, Grace Tsai, Michael Firman, Gabriel Brostow, Alexander Schwing - CVPR 2021 [Link to paper] We propose
GNN4Traffic - This is the repository for the collection of Graph Neural Network for Traffic Forecasting
GNN4Traffic - This is the repository for the collection of Graph Neural Network for Traffic Forecasting
Anomaly detection on SQL data warehouses and databases
With CueObserve, you can run anomaly detection on data in your SQL data warehouses and databases. Getting Started Install via Docker docker run -p 300
An open-access benchmark and toolbox for electricity price forecasting
epftoolbox The epftoolbox is the first open-access library for driving research in electricity price forecasting. Its main goal is to make available a
A selection of State Of The Art research papers (and code) on human locomotion (pose + trajectory) prediction (forecasting)
A selection of State Of The Art research papers (and code) on human trajectory prediction (forecasting). Papers marked with [W] are workshop papers.
Code for the CIKM 2019 paper "DSANet: Dual Self-Attention Network for Multivariate Time Series Forecasting".
Dual Self-Attention Network for Multivariate Time Series Forecasting 20.10.26 Update: Due to the difficulty of installation and code maintenance cause
Multi-Horizon-Forecasting-for-Limit-Order-Books
Multi-Horizon-Forecasting-for-Limit-Order-Books This jupyter notebook is used to demonstrate our work, Multi-Horizon Forecasting for Limit Order Books
darts is a Python library for easy manipulation and forecasting of time series.
A python library for easy manipulation and forecasting of time series.
Code for Towards Streaming Perception (ECCV 2020) :car:
sAP — Code for Towards Streaming Perception ECCV Best Paper Honorable Mention Award Feb 2021: Announcing the Streaming Perception Challenge (CVPR 2021
Adversarial Attacks on Probabilistic Autoregressive Forecasting Models.
Attack-Probabilistic-Models This is the source code for Adversarial Attacks on Probabilistic Autoregressive Forecasting Models. This repository contai
Python implementation of the Density Line Chart by Moritz & Fisher.
PyDLC - Density Line Charts with Python Python implementation of the Density Line Chart (Moritz & Fisher, 2018) to visualize large collections of time
Plot, scatter plots and histograms in the terminal using braille dots
Plot, scatter plots and histograms in the terminal using braille dots, with (almost) no dependancies. Plot with color or make complex figures - similar to a very small sibling to matplotlib. Or use the canvas to plot dots and lines yourself.
This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the time series forecasting research space.
TSForecasting This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the tim
Forecasting directional movements of stock prices for intraday trading using LSTM and random forest
Forecasting directional movements of stock-prices for intraday trading using LSTM and random-forest https://arxiv.org/abs/2004.10178 Pushpendu Ghosh,
tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.
Time series Timeseries Deep Learning Pytorch fastai - State-of-the-art Deep Learning with Time Series and Sequences in Pytorch / fastai
Greykite: A flexible, intuitive and fast forecasting library
The Greykite library provides flexible, intuitive and fast forecasts through its flagship algorithm, Silverkite.
Statsmodels: statistical modeling and econometrics in Python
About statsmodels statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics an
Yet Another Time Series Model
Yet Another Timeseries Model (YATSM) master v0.6.x-maintenance Build Coverage Docs DOI | About Yet Another Timeseries Model (YATSM) is a Python packag
An open-source library of algorithms to analyse time series in GPU and CPU.
An open-source library of algorithms to analyse time series in GPU and CPU.
Spectral Temporal Graph Neural Network (StemGNN in short) for Multivariate Time-series Forecasting
Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting This repository is the official implementation of Spectral Temporal Gr
A Python package for Bayesian forecasting with object-oriented design and probabilistic models under the hood.
Disclaimer This project is stable and being incubated for long-term support. It may contain new experimental code, for which APIs are subject to chang
A python library for Bayesian time series modeling
PyDLM Welcome to pydlm, a flexible time series modeling library for python. This library is based on the Bayesian dynamic linear model (Harrison and W
AtsPy: Automated Time Series Models in Python (by @firmai)
Automated Time Series Models in Python (AtsPy) SSRN Report Easily develop state of the art time series models to forecast univariate data series. Simp
Automatically build ARIMA, SARIMAX, VAR, FB Prophet and XGBoost Models on Time Series data sets with a Single Line of Code. Now updated with Dask to handle millions of rows.
Auto_TS: Auto_TimeSeries Automatically build multiple Time Series models using a Single Line of Code. Now updated with Dask. Auto_timeseries is a comp
A Python library for detecting patterns and anomalies in massive datasets using the Matrix Profile
matrixprofile-ts matrixprofile-ts is a Python 2 and 3 library for evaluating time series data using the Matrix Profile algorithms developed by the Keo
Time series forecasting with PyTorch
Our article on Towards Data Science introduces the package and provides background information. Pytorch Forecasting aims to ease state-of-the-art time
A Python package for time series classification
pyts: a Python package for time series classification pyts is a Python package for time series classification. It aims to make time series classificat
A python library for easy manipulation and forecasting of time series.
Time Series Made Easy in Python darts is a python library for easy manipulation and forecasting of time series. It contains a variety of models, from
Probabilistic time series modeling in Python
GluonTS - Probabilistic Time Series Modeling in Python GluonTS is a Python toolkit for probabilistic time series modeling, built around Apache MXNet (
A machine learning toolkit dedicated to time-series data
tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.
pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se
A unified framework for machine learning with time series
Welcome to sktime A unified framework for machine learning with time series We provide specialized time series algorithms and scikit-learn compatible
ARCH models in Python
arch Autoregressive Conditional Heteroskedasticity (ARCH) and other tools for financial econometrics, written in Python (with Cython and/or Numba used
A spherical CNN for weather forecasting
DeepSphere-Weather - Deep Learning on the sphere for weather/climate applications. The code in this repository provides a scalable and flexible framew
High performance datastore for time series and tick data
Arctic TimeSeries and Tick store Arctic is a high performance datastore for numeric data. It supports Pandas, numpy arrays and pickled objects out-of-
Tool for producing high quality forecasts for time series data that has multiple seasonality with linear or non-linear growth.
Prophet: Automatic Forecasting Procedure Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends ar
A machine learning toolkit dedicated to time-series data
tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti
Implementation of the paper NAST: Non-Autoregressive Spatial-Temporal Transformer for Time Series Forecasting.
Non-AR Spatial-Temporal Transformer Introduction Implementation of the paper NAST: Non-Autoregressive Spatial-Temporal Transformer for Time Series For
Statsmodels: statistical modeling and econometrics in Python
About statsmodels statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics an
Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting
Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting This is the origin Pytorch implementation of Informer in the followin
Statsmodels: statistical modeling and econometrics in Python
About statsmodels statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics an
The windML framework provides an easy-to-use access to wind data sources within the Python world, building upon numpy, scipy, sklearn, and matplotlib. Renewable Wind Energy, Forecasting, Prediction
windml Build status : The importance of wind in smart grids with a large number of renewable energy resources is increasing. With the growing infrastr
A unified framework for machine learning with time series
Welcome to sktime A unified framework for machine learning with time series We provide specialized time series algorithms and scikit-learn compatible