716 Repositories
Python training-dynamics Libraries
PyTorch common framework to accelerate network implementation, training and validation
pytorch-framework PyTorch common framework to accelerate network implementation, training and validation. This framework is inspired by works from MML
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"
CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2
Single-step adversarial training (AT) has received wide attention as it proved to be both efficient and robust.
Subspace Adversarial Training Single-step adversarial training (AT) has received wide attention as it proved to be both efficient and robust. However,
This repo contains simple to use, pretrained/training-less models for speaker diarization.
PyDiar This repo contains simple to use, pretrained/training-less models for speaker diarization. Supported Models Binary Key Speaker Modeling Based o
A procedural Blender pipeline for photorealistic training image generation
BlenderProc2 A procedural Blender pipeline for photorealistic rendering. Documentation | Tutorials | Examples | ArXiv paper | Workshop paper Features
Online Pseudo Label Generation by Hierarchical Cluster Dynamics for Adaptive Person Re-identification
Online Pseudo Label Generation by Hierarchical Cluster Dynamics for Adaptive Person Re-identification
Training open neural machine translation models
Train Opus-MT models This package includes scripts for training NMT models using MarianNMT and OPUS data for OPUS-MT. More details are given in the Ma
High performance distributed framework for training deep learning recommendation models based on PyTorch.
PERSIA (Parallel rEcommendation tRaining System with hybrId Acceleration) is developed by AI platform@Kuaishou Technology, collaborating with ETH. It
Automatically download the cwru data set, and then divide it into training data set and test data set
Automatically download the cwru data set, and then divide it into training data set and test data set.自动下载cwru数据集,然后分训练数据集和测试数据集
Generate text captions for images from their CLIP embeddings. Includes PyTorch model code and example training script.
clip-text-decoder Generate text captions for images from their CLIP embeddings. Includes PyTorch model code and example training script. Example Predi
Code of the paper "Deep Human Dynamics Prior" in ACM MM 2021.
Code of the paper "Deep Human Dynamics Prior" in ACM MM 2021. Figure 1: In the process of motion capture (mocap), some joints or even the whole human
Make differentially private training of transformers easy for everyone
private-transformers This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers. What is this? Why
Pytorch library for end-to-end transformer models training and serving
Pytorch library for end-to-end transformer models training and serving
Code accompanying paper: Meta-Learning to Improve Pre-Training
Meta-Learning to Improve Pre-Training This folder contains code to run experiments in the paper Meta-Learning to Improve Pre-Training, NeurIPS 2021. P
PeCo: Perceptual Codebook for BERT Pre-training of Vision Transformers
PeCo: Perceptual Codebook for BERT Pre-training of Vision Transformers
YOLOv4-v3 Training Automation API for Linux
This repository allows you to get started with training a state-of-the-art Deep Learning model with little to no configuration needed! You provide your labeled dataset or label your dataset using our BMW-LabelTool-Lite and you can start the training right away and monitor it in many different ways like TensorBoard or a custom REST API and GUI. NoCode training with YOLOv4 and YOLOV3 has never been so easy.
Intel(R) Extension for Scikit-learn is a seamless way to speed up your Scikit-learn application
Intel(R) Extension for Scikit-learn* Installation | Documentation | Examples | Support | FAQ With Intel(R) Extension for Scikit-learn you can accelera
Softlearning is a reinforcement learning framework for training maximum entropy policies in continuous domains. Includes the official implementation of the Soft Actor-Critic algorithm.
Softlearning Softlearning is a deep reinforcement learning toolbox for training maximum entropy policies in continuous domains. The implementation is
This is a simple Tic-Tac-Toe game.
Tic-Tac-Toe Nosso famoso e tradicional Jogo da Velha, mas agora em Python. Development setup Para rodar o programa, basta instalar python em sua maqui
Training code and evaluation benchmarks for the "Self-Supervised Policy Adaptation during Deployment" paper.
Self-Supervised Policy Adaptation during Deployment PyTorch implementation of PAD and evaluation benchmarks from Self-Supervised Policy Adaptation dur
Augmenting Physical Models with Deep Networks for Complex Dynamics Forecasting
Official code of APHYNITY Augmenting Physical Models with Deep Networks for Complex Dynamics Forecasting (ICLR 2021, Oral) Yuan Yin*, Vincent Le Guen*
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo
A colab notebook for training Stylegan2-ada on colab, transfer learning onto your own dataset.
Stylegan2-Ada-Google-Colab-Starter-Notebook A no thrills colab notebook for training Stylegan2-ada on colab. transfer learning onto your own dataset h
Code to reprudece NeurIPS paper: Accelerated Sparse Neural Training: A Provable and Efficient Method to Find N:M Transposable Masks
Accelerated Sparse Neural Training: A Provable and Efficient Method to FindN:M Transposable Masks Recently, researchers proposed pruning deep neural n
Delve is a Python package for analyzing the inference dynamics of your PyTorch model.
Delve is a Python package for analyzing the inference dynamics of your PyTorch model.
fastai ulmfit - Pretraining the Language Model, Fine-Tuning and training a Classifier
fast.ai ULMFiT with SentencePiece from pretraining to deployment Motivation: Why even bother with a non-BERT / Transformer language model? Short answe
An easy to use Natural Language Processing library and framework for predicting, training, fine-tuning, and serving up state-of-the-art NLP models.
Welcome to AdaptNLP A high level framework and library for running, training, and deploying state-of-the-art Natural Language Processing (NLP) models
An Agnostic Computer Vision Framework - Pluggable to any Training Library: Fastai, Pytorch-Lightning with more to come
An Agnostic Object Detection Framework IceVision is the first agnostic computer vision framework to offer a curated collection with hundreds of high-q
This is the official PyTorch implementation for "Mesa: A Memory-saving Training Framework for Transformers".
A Memory-saving Training Framework for Transformers This is the official PyTorch implementation for Mesa: A Memory-saving Training Framework for Trans
Live training loss plot in Jupyter Notebook for Keras, PyTorch and others
livelossplot Don't train deep learning models blindfolded! Be impatient and look at each epoch of your training! (RECENT CHANGES, EXAMPLES IN COLAB, A
This is the official PyTorch implementation for "Mesa: A Memory-saving Training Framework for Transformers".
Mesa: A Memory-saving Training Framework for Transformers This is the official PyTorch implementation for Mesa: A Memory-saving Training Framework for
A Python implementation of the Robotics Toolbox for MATLAB
Robotics Toolbox for Python A Python implementation of the Robotics Toolbox for MATLAB® GitHub repository Documentation Wiki (examples and details) Sy
The pure and clear PyTorch Distributed Training Framework.
The pure and clear PyTorch Distributed Training Framework. Introduction Requirements and Usage Dependency Dataset Basic Usage Slurm Cluster Usage Base
Scheme for training and applying a label propagation framework
Factorisation-based Image Labelling Overview This is a scheme for training and applying the factorisation-based image labelling (FIL) framework. Some
2D fluid simulation implementation of Jos Stam paper on real-time fuild dynamics, including some suggested extensions.
Fluid Simulation Usage Download this repo and store it in your computer. Open a terminal and go to the root directory of this folder. Make sure you ha
A tutorial on training a DarkNet YOLOv4 model for the CrowdHuman dataset
YOLOv4 CrowdHuman Tutorial This is a tutorial demonstrating how to train a YOLOv4 people detector using Darknet and the CrowdHuman dataset. Table of c
Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).
Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).
Neural network graphs and training metrics for PyTorch, Tensorflow, and Keras.
HiddenLayer A lightweight library for neural network graphs and training metrics for PyTorch, Tensorflow, and Keras. HiddenLayer is simple, easy to ex
SageMaker Python SDK is an open source library for training and deploying machine learning models on Amazon SageMaker.
SageMaker Python SDK SageMaker Python SDK is an open source library for training and deploying machine learning models on Amazon SageMaker. With the S
Code for the paper "SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness" (NeurIPS 2021)
SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness (NeurIPS2021) This repository contains code for the paper "Smo
Official PyTorch implementation for "Low Precision Decentralized Distributed Training with Heterogenous Data"
Low Precision Decentralized Training with Heterogenous Data Official PyTorch implementation for "Low Precision Decentralized Distributed Training with
Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).
Fisher Induced Sparse uncHanging (FISH) Mask This repo contains the code for Fisher Induced Sparse uncHanging (FISH) Mask training, from "Training Neu
Simulation code and tutorial for BBHnet training data
Simulation Dataset for BBHnet NOTE: OLD README, UPDATE IN PROGRESS We generate simulation dataset to train BBHnet, our deep learning framework for det
Multi-modal Content Creation Model Training Infrastructure including the FACT model (AI Choreographer) implementation.
AI Choreographer: Music Conditioned 3D Dance Generation with AIST++ [ICCV-2021]. Overview This package contains the model implementation and training
PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.
PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.
Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models
Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models, under review at ICLR 2017 requirements: T
Generating Videos with Scene Dynamics
Generating Videos with Scene Dynamics This repository contains an implementation of Generating Videos with Scene Dynamics by Carl Vondrick, Hamed Pirs
RP-GAN: Stable GAN Training with Random Projections
RP-GAN: Stable GAN Training with Random Projections This repository contains a reference implementation of the algorithm described in the paper: Behna
Code for training and evaluation of the model from "Language Generation with Recurrent Generative Adversarial Networks without Pre-training"
Language Generation with Recurrent Generative Adversarial Networks without Pre-training Code for training and evaluation of the model from "Language G
A stable algorithm for GAN training
DRAGAN (Deep Regret Analytic Generative Adversarial Networks) Link to our paper - https://arxiv.org/abs/1705.07215 Pytorch implementation (thanks!) -
Code for ICLR2018 paper: Improving GAN Training via Binarized Representation Entropy (BRE) Regularization - Y. Cao · W Ding · Y.C. Lui · R. Huang
code for "Improving GAN Training via Binarized Representation Entropy (BRE) Regularization" (ICLR2018 paper) paper: https://arxiv.org/abs/1805.03644 G
Training, generation, and analysis code for Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics
Location-Aware Generative Adversarial Networks (LAGAN) for Physics Synthesis This repository contains all the code used in L. de Oliveira (@lukedeo),
TensorFlow implementation of "Learning from Simulated and Unsupervised Images through Adversarial Training"
Simulated+Unsupervised (S+U) Learning in TensorFlow TensorFlow implementation of Learning from Simulated and Unsupervised Images through Adversarial T
Code for the paper "Improved Techniques for Training GANs"
Status: Archive (code is provided as-is, no updates expected) improved-gan code for the paper "Improved Techniques for Training GANs" MNIST, SVHN, CIF
High performance distributed framework for training deep learning recommendation models based on PyTorch.
High performance distributed framework for training deep learning recommendation models based on PyTorch.
CCQA A New Web-Scale Question Answering Dataset for Model Pre-Training
CCQA: A New Web-Scale Question Answering Dataset for Model Pre-Training This is the official repository for the code and models of the paper CCQA: A N
[NeurIPS 2021] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data
Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data (NeurIPS 2021) This repository will provide the official PyTorch implementa
Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization
Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization This repository contains the source code for the paper (link wi
Improving the robustness and performance of biomedical NLP models through adversarial training
RobustBioNLP Improving the robustness and performance of biomedical NLP models through adversarial training In this repository you can find suppliment
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning Authors: Yixuan Su, Fangyu Liu, Zaiqiao Meng, Lei Shu, Ehsan Shareghi, and Nig
AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention
AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention. AdaNet buil
🚪✊Knock Knock: Get notified when your training ends with only two additional lines of code
Knock Knock A small library to get a notification when your training is complete or when it crashes during the process with two additional lines of co
Fast, modular reference implementation and easy training of Semantic Segmentation algorithms in PyTorch.
TorchSeg This project aims at providing a fast, modular reference implementation for semantic segmentation models using PyTorch. Highlights Modular De
Training PSPNet in Tensorflow. Reproduce the performance from the paper.
Training Reproduce of PSPNet. (Updated 2021/04/09. Authors of PSPNet have provided a Pytorch implementation for PSPNet and their new work with support
This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation.
ERFNet This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation. NEW!! New PyTorch
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation.
ENet This work has been published in arXiv: ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. Packages: train contains too
Chainer Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)
fcn - Fully Convolutional Networks Chainer implementation of Fully Convolutional Networks. Installation pip install fcn Inference Inference is done as
Training BERT with Compute/Time (Academic) Budget
Training BERT with Compute/Time (Academic) Budget This repository contains scripts for pre-training and finetuning BERT-like models with limited time
A Pytorch implementation of MoveNet from Google. Include training code and pre-train model.
Movenet.Pytorch Intro MoveNet is an ultra fast and accurate model that detects 17 keypoints of a body. This is A Pytorch implementation of MoveNet fro
Single machine, multiple cards training; mix-precision training; DALI data loader.
Template Script Category Description Category script comparison script train.py, loader.py for single-machine-multiple-cards training train_DP.py, tra
SAT: 2D Semantics Assisted Training for 3D Visual Grounding, ICCV 2021 (Oral)
SAT: 2D Semantics Assisted Training for 3D Visual Grounding SAT: 2D Semantics Assisted Training for 3D Visual Grounding by Zhengyuan Yang, Songyang Zh
A Python training and inference implementation of Yolov5 helmet detection in Jetson Xavier nx and Jetson nano
yolov5-helmet-detection-python A Python implementation of Yolov5 to detect head or helmet in the wild in Jetson Xavier nx and Jetson nano. In Jetson X
QAT(quantize aware training) for classification with MQBench
MQBench Quantization Aware Training with PyTorch I am using MQBench(Model Quantization Benchmark)(http://mqbench.tech/) to quantize the model for depl
CINECA molecular dynamics tutorial set
High Performance Molecular Dynamics Logging into CINECA's computer systems To logon to the M100 system use the following command from an SSH client ss
Powerful, efficient particle trajectory analysis in scientific Python.
freud Overview The freud Python library provides a simple, flexible, powerful set of tools for analyzing trajectories obtained from molecular dynamics
MQBench Quantization Aware Training with PyTorch
MQBench Quantization Aware Training with PyTorch I am using MQBench(Model Quantization Benchmark)(http://mqbench.tech/) to quantize the model for depl
Official Code Release for "TIP-Adapter: Training-free clIP-Adapter for Better Vision-Language Modeling"
Official Code Release for "TIP-Adapter: Training-free clIP-Adapter for Better Vision-Language Modeling" Pipeline of Tip-Adapter Tip-Adapter can provid
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning Authors: Yixuan Su, Fangyu Liu, Zaiqiao Meng, Lei Shu, Ehsan Shareghi, and Nig
TaCL: Improve BERT Pre-training with Token-aware Contrastive Learning
TaCL: Improve BERT Pre-training with Token-aware Contrastive Learning
This package is a python library with tools for the Molecular Simulation - Software Gromos.
This package is a python library with tools for the Molecular Simulation - Software Gromos. It allows you to easily set up, manage and analyze simulations in python.
Visualize the training curve from the *.csv file (tensorboard format).
Training-Curve-Vis Visualize the training curve from the *.csv file (tensorboard format). Feature Custom labels Curve smoothing Support for multiple c
[ICCV 2021 Oral] Just Ask: Learning to Answer Questions from Millions of Narrated Videos
Just Ask: Learning to Answer Questions from Millions of Narrated Videos Webpage • Demo • Paper This repository provides the code for our paper, includ
[ICCV' 21] "Unsupervised Point Cloud Pre-training via Occlusion Completion"
OcCo: Unsupervised Point Cloud Pre-training via Occlusion Completion This repository is the official implementation of paper: "Unsupervised Point Clou
Dataset and Code for the paper "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021), and "Depth-only Object Tracking" (BMVC2021)
DeT and DOT Code and datasets for "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021) "Depth-only Object Tracking" (BMVC2021) @InProceedings
ICCV2021, Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet
Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet, ICCV 2021 Update: 2021/03/11: update our new results. Now our T2T-ViT-14 w
A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squares.
W.I.P-Aim-Memory-Game A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squar
Efficient Training of Audio Transformers with Patchout
PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa
This is the implementation of the paper LiST: Lite Self-training Makes Efficient Few-shot Learners.
LiST (Lite Self-Training) This is the implementation of the paper LiST: Lite Self-training Makes Efficient Few-shot Learners. LiST is short for Lite S
Example for Calculating Robot Dynamics Using Pinocchio Library
A Example for Calculating Robot Dynamics Using Pinocchio Library Developed by: Xinyang Tian. Platform: Linux + Pinocchio. In this work, i use Pinocchi
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling Code for the paper: Greg Ver Steeg and Aram Galstyan. "Hamiltonian Dynamics with N
A primitive Python wrapper around the Gromacs tools.
README: GromacsWrapper A primitive Python wrapper around the Gromacs tools. The library is tested with GROMACS 4.6.5, 2018.x, 2019.x, 2020.x, and 2021
A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)
A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)
Efficient Sharpness-aware Minimization for Improved Training of Neural Networks
Efficient Sharpness-aware Minimization for Improved Training of Neural Networks Code for “Efficient Sharpness-aware Minimization for Improved Training
Code for EMNLP2021 paper "Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training"
VoCapXLM Code for EMNLP2021 paper Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training Environment DockerFile: dancingso
The spiritual successor to knockknock for PyTorch Lightning, get notified when your training ends
Who's there? The spiritual successor to knockknock for PyTorch Lightning, to get a notification when your training is complete or when it crashes duri
Revealing and Protecting Labels in Distributed Training
Revealing and Protecting Labels in Distributed Training
The code for replicating the experiments from the LFI in SSMs with Unknown Dynamics paper.
Likelihood-Free Inference in State-Space Models with Unknown Dynamics This package contains the codes required to run the experiments in the paper. Th
training script for space time memory network
Trainig Script for Space Time Memory Network This codebase implemented training code for Space Time Memory Network with some cyclic features. Requirem
Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds (Local-Lip)
Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds (Local-Lip) Introduction TL;DR: We propose an efficient and trainabl