315 Repositories
Python variational-inference Libraries
A Model for Natural Language Attack on Text Classification and Inference
TextFooler A Model for Natural Language Attack on Text Classification and Inference This is the source code for the paper: Jin, Di, et al. "Is BERT Re
Code for the paper "BERT Loses Patience: Fast and Robust Inference with Early Exit".
Patience-based Early Exit Code for the paper "BERT Loses Patience: Fast and Robust Inference with Early Exit". NEWS: We now have a better and tidier i
Source code for "FastBERT: a Self-distilling BERT with Adaptive Inference Time".
FastBERT Source code for "FastBERT: a Self-distilling BERT with Adaptive Inference Time". Good News 2021/10/29 - Code: Code of FastPLM is released on
DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference
DeeBERT This is the code base for the paper DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference. Code in this repository is also available
This repository contains the code for "Exploiting Cloze Questions for Few-Shot Text Classification and Natural Language Inference"
Pattern-Exploiting Training (PET) This repository contains the code for Exploiting Cloze Questions for Few-Shot Text Classification and Natural Langua
Bayesian inference for Permuton-induced Chinese Restaurant Process (NeurIPS2021).
Permuton-induced Chinese Restaurant Process Note: Currently only the Matlab version is available, but a Python version will be available soon! This is
High performance Cross-platform Inference-engine, you could run Anakin on x86-cpu,arm, nv-gpu, amd-gpu,bitmain and cambricon devices.
Anakin2.0 Welcome to the Anakin GitHub. Anakin is a cross-platform, high-performance inference engine, which is originally developed by Baidu engineer
Real-time VIBE: Frame by Frame Inference of VIBE (Video Inference for Human Body Pose and Shape Estimation)
Real-time VIBE Inference VIBE frame-by-frame. Overview This is a frame-by-frame inference fork of VIBE at [https://github.com/mkocabas/VIBE]. Usage: i
Low-code/No-code approach for deep learning inference on devices
EzEdgeAI A concept project that uses a low-code/no-code approach to implement deep learning inference on devices. It provides a componentized framewor
Fast mesh denoising with data driven normal filtering using deep variational autoencoders
Fast mesh denoising with data driven normal filtering using deep variational autoencoders This is an implementation for the paper entitled "Fast mesh
Research code for the paper "Variational Gibbs inference for statistical estimation from incomplete data".
Variational Gibbs inference (VGI) This repository contains the research code for Simkus, V., Rhodes, B., Gutmann, M. U., 2021. Variational Gibbs infer
An index of algorithms for learning causality with data
awesome-causality-algorithms An index of algorithms for learning causality with data. Please cite our survey paper if this index is helpful. @article{
Intel(R) Extension for Scikit-learn is a seamless way to speed up your Scikit-learn application
Intel(R) Extension for Scikit-learn* Installation | Documentation | Examples | Support | FAQ With Intel(R) Extension for Scikit-learn you can accelera
Code for paper " AdderNet: Do We Really Need Multiplications in Deep Learning?"
AdderNet: Do We Really Need Multiplications in Deep Learning? This code is a demo of CVPR 2020 paper AdderNet: Do We Really Need Multiplications in De
PointPillars inference with TensorRT
A project demonstrating how to use CUDA-PointPillars to deal with cloud points data from lidar.
Contrastively Disentangled Sequential Variational Audoencoder
Contrastively Disentangled Sequential Variational Audoencoder (C-DSVAE) Overview This is the implementation for our C-DSVAE, a novel self-supervised d
Self-Supervised Document-to-Document Similarity Ranking via Contextualized Language Models and Hierarchical Inference
Self-Supervised Document Similarity Ranking (SDR) via Contextualized Language Models and Hierarchical Inference This repo is the implementation for SD
Delve is a Python package for analyzing the inference dynamics of your PyTorch model.
Delve is a Python package for analyzing the inference dynamics of your PyTorch model.
A collection of inference modules for fastai2
fastinference A collection of inference modules for fastai including inference speedup and interpretability Install pip install fastinference There ar
A Python package for causal inference using Synthetic Controls
Synthetic Control Methods A Python package for causal inference using synthetic controls This Python package implements a class of approaches to estim
Tutorial in Python targeted at Epidemiologists. Will discuss the basics of analysis in Python 3
Python-for-Epidemiologists This repository is an introduction to epidemiology analyses in Python. Additionally, the tutorials for my library zEpid are
Generalized Random Forests
generalized random forests A pluggable package for forest-based statistical estimation and inference. GRF currently provides non-parametric methods fo
zeus is a Python implementation of the Ensemble Slice Sampling method.
zeus is a Python implementation of the Ensemble Slice Sampling method. Fast & Robust Bayesian Inference, Efficient Markov Chain Monte Carlo (MCMC), Bl
Topic Inference with Zeroshot models
zeroshot_topics Table of Contents Installation Usage License Installation zeroshot_topics is distributed on PyPI as a universal wheel and is available
Source code for our paper "Do Not Trust Prediction Scores for Membership Inference Attacks"
Do Not Trust Prediction Scores for Membership Inference Attacks Abstract: Membership inference attacks (MIAs) aim to determine whether a specific samp
Code for "Universal inference meets random projections: a scalable test for log-concavity"
How to use this repository This repository contains code to replicate the results of "Universal inference meets random projections: a scalable test fo
Machine Learning Privacy Meter: A tool to quantify the privacy risks of machine learning models with respect to inference attacks, notably membership inference attacks
ML Privacy Meter Machine learning is playing a central role in automated decision making in a wide range of organization and service providers. The da
Pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks."
alpha-GAN Unofficial pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks." arXi
Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models
Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models, under review at ICLR 2017 requirements: T
Adversarially Learned Inference
Adversarially Learned Inference Code for the Adversarially Learned Inference paper. Compiling the paper locally From the repo's root directory, $ cd p
Train CPPNs as a Generative Model, using Generative Adversarial Networks and Variational Autoencoder techniques to produce high resolution images.
cppn-gan-vae tensorflow Train Compositional Pattern Producing Network as a Generative Model, using Generative Adversarial Networks and Variational Aut
Lightweight Python library for adding real-time object tracking to any detector.
Norfair is a customizable lightweight Python library for real-time 2D object tracking. Using Norfair, you can add tracking capabilities to any detecto
Ladder Variational Autoencoders (LVAE) in PyTorch
Ladder Variational Autoencoders (LVAE) PyTorch implementation of Ladder Variational Autoencoders (LVAE) [1]: where the variational distributions q at
Collection of generative models in Tensorflow
tensorflow-generative-model-collections Tensorflow implementation of various GANs and VAEs. Related Repositories Pytorch version Pytorch version of th
Hummingbird compiles trained ML models into tensor computation for faster inference.
Hummingbird Introduction Hummingbird is a library for compiling trained traditional ML models into tensor computations. Hummingbird allows users to se
The software associated with a paper accepted at EMNLP 2021 titled "Open Knowledge Graphs Canonicalization using Variational Autoencoders".
Open-KG-canonicalization The software associated with a paper accepted at EMNLP 2021 titled "Open Knowledge Graphs Canonicalization using Variational
Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder
Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder
Extracting and filtering paraphrases by bridging natural language inference and paraphrasing
nli2paraphrases Source code repository accompanying the preprint Extracting and filtering paraphrases by bridging natural language inference and parap
Python package for causal inference using Bayesian structural time-series models.
Python Causal Impact Causal inference using Bayesian structural time-series models. This package aims at defining a python equivalent of the R CausalI
A Python package for modular causal inference analysis and model evaluations
Causal Inference 360 A Python package for inferring causal effects from observational data. Description Causal inference analysis enables estimating t
DoWhy is a Python library for causal inference that supports explicit modeling and testing of causal assumptions. DoWhy is based on a unified language for causal inference, combining causal graphical models and potential outcomes frameworks.
DoWhy | An end-to-end library for causal inference Amit Sharma, Emre Kiciman Introducing DoWhy and the 4 steps of causal inference | Microsoft Researc
PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices.
PyTorch-LIT PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices. With
A Python training and inference implementation of Yolov5 helmet detection in Jetson Xavier nx and Jetson nano
yolov5-helmet-detection-python A Python implementation of Yolov5 to detect head or helmet in the wild in Jetson Xavier nx and Jetson nano. In Jetson X
Official implementation of "Membership Inference Attacks Against Self-supervised Speech Models"
Introduction Official implementation of "Membership Inference Attacks Against Self-supervised Speech Models". In this work, we demonstrate that existi
v objective diffusion inference code for JAX.
v-diffusion-jax v objective diffusion inference code for JAX, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The models
Repo for Photon-Starved Scene Inference using Single Photon Cameras, ICCV 2021
Photon-Starved Scene Inference using Single Photon Cameras ICCV 2021 Arxiv Project Video Bhavya Goyal, Mohit Gupta University of Wisconsin-Madison Abs
Code for the Paper: Conditional Variational Capsule Network for Open Set Recognition
Conditional Variational Capsule Network for Open Set Recognition This repository hosts the official code related to "Conditional Variational Capsule N
Codes for 'Dual Parameterization of Sparse Variational Gaussian Processes'
Dual Parameterization of Sparse Variational Gaussian Processes Documentation | Notebooks | API reference Introduction This repository is the official
Inference pipeline for our participation in the FeTA challenge 2021.
feta-inference Inference pipeline for our participation in the FeTA challenge 2021. Team name: TRABIT Installation Download the two folders in https:/
Experiments and code to generate the GINC small-scale in-context learning dataset from "An Explanation for In-context Learning as Implicit Bayesian Inference"
GINC small-scale in-context learning dataset GINC (Generative In-Context learning Dataset) is a small-scale synthetic dataset for studying in-context
A modular, research-friendly framework for high-performance and inference of sequence models at many scales
T5X T5X is a modular, composable, research-friendly framework for high-performance, configurable, self-service training, evaluation, and inference of
Spert NLP Relation Extraction API deployed with torchserve for inference
SpERT torchserve Spert_torchserve is the Relation Extraction model (SpERT)Span-based Entity and Relation Transformer API deployed with pytorch/serve.
Bayes-Newton—A Gaussian process library in JAX, with a unifying view of approximate Bayesian inference as variants of Newton's algorithm.
Bayes-Newton Bayes-Newton is a library for approximate inference in Gaussian processes (GPs) in JAX (with objax), built and actively maintained by Wil
This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroimaging" that has been accepted to NeurIPS 2021.
Dugh-NeurIPS-2021 This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroi
Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.
human-pose-estimation-3d-python-cpp RealSenseD435 (RGB) 480x640 + CPU Corei9 45 FPS (Depth is not used) 1. Run 1-1. RealSenseD435 (RGB) 480x640 + CPU
Official repository of the paper "A Variational Approximation for Analyzing the Dynamics of Panel Data". Mixed Effect Neural ODE. UAI 2021.
Official repository of the paper (UAI 2021) "A Variational Approximation for Analyzing the Dynamics of Panel Data", Mixed Effect Neural ODE. Panel dat
Code for "Discovering Non-monotonic Autoregressive Orderings with Variational Inference" (paper and code updated from ICLR 2021)
Discovering Non-monotonic Autoregressive Orderings with Variational Inference Description This package contains the source code implementation of the
IndoNLI: A Natural Language Inference Dataset for Indonesian
IndoNLI: A Natural Language Inference Dataset for Indonesian This is a repository for data and code accompanying our EMNLP 2021 paper "IndoNLI: A Natu
VACA: Designing Variational Graph Autoencoders for Interventional and Counterfactual Queries
VACA Code repository for the paper "VACA: Designing Variational Graph Autoencoders for Interventional and Counterfactual Queries (arXiv)". The impleme
PyTorch and GPyTorch implementation of the paper "Conditioning Sparse Variational Gaussian Processes for Online Decision-making."
Conditioning Sparse Variational Gaussian Processes for Online Decision-making This repository contains a PyTorch and GPyTorch implementation of the pa
Dynamica causal Bayesian optimisation
Dynamic Causal Bayesian Optimization This is a Python implementation of Dynamic Causal Bayesian Optimization as presented at NeurIPS 2021. Abstract Th
Code for our paper: Online Variational Filtering and Parameter Learning
Variational Filtering To run phi learning on linear gaussian (Fig1a) python linear_gaussian_phi_learning.py To run phi and theta learning on linear g
PyTorch Autoencoders - Implementing a Variational Autoencoder (VAE) Series in Pytorch.
PyTorch Autoencoders Implementing a Variational Autoencoder (VAE) Series in Pytorch. Inspired by this repository Model List check model paper conferen
Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders
Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders Getting Started Install requirements with Anaconda: conda env c
This repository contains code demonstrating the methods outlined in Path Signature Area-Based Causal Discovery in Coupled Time Series presented at Causal Analysis Workshop 2021.
signed-area-causal-inference This repository contains code demonstrating the methods outlined in Path Signature Area-Based Causal Discovery in Coupled
Code for the paper "Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness"
DU-VAE This is the pytorch implementation of the paper "Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness" Acknowledgement
A SageMaker Projects template to deploy a model from Model Registry, choosing your preferred method of deployment among async (Asynchronous Inference), batch (Batch Transform), realtime (Real-time Inference Endpoint). More to be added soon!
SageMaker Projects: Multiple Choice Deployment A SageMaker Projects template to deploy a model from Model Registry, choosing your preferred method of
Bayesian Meta-Learning Through Variational Gaussian Processes
vmgp This is the repository of Vivek Myers and Nikhil Sardana for our CS 330 final project, Bayesian Meta-Learning Through Variational Gaussian Proces
Variational autoencoder for anime face reconstruction
VAE animeface Variational autoencoder for anime face reconstruction Introduction This repository is an exploratory example to train a variational auto
On-device speech-to-intent engine powered by deep learning
Rhino Made in Vancouver, Canada by Picovoice Rhino is Picovoice's Speech-to-Intent engine. It directly infers intent from spoken commands within a giv
Train a state-of-the-art yolov3 object detector from scratch!
TrainYourOwnYOLO: Building a Custom Object Detector from Scratch This repo let's you train a custom image detector using the state-of-the-art YOLOv3 c
NVIDIA Merlin is an open source library providing end-to-end GPU-accelerated recommender systems, from feature engineering and preprocessing to training deep learning models and running inference in production.
NVIDIA Merlin NVIDIA Merlin is an open source library designed to accelerate recommender systems on NVIDIA’s GPUs. It enables data scientists, machine
PixelPyramids: Exact Inference Models from Lossless Image Pyramids (ICCV 2021)
PixelPyramids: Exact Inference Models from Lossless Image Pyramids This repository contains the PyTorch implementation of the paper PixelPyramids: Exa
Membership Inference Attack against Graph Neural Networks
MIA GNN Project Starter If you meet the version mismatch error for Lasagne library, please use following command to upgrade Lasagne library. pip insta
This repository outlines deploying a local Kubeflow v1.3 instance on microk8s and deploying a simple MNIST classifier using KFServing.
Zero to Inference with Kubeflow Getting Started This repository houses all of the tools, utilities, and example pipeline implementations for exploring
[ICCV 2021] Focal Frequency Loss for Image Reconstruction and Synthesis
Focal Frequency Loss - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Focal Fre
This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model inference.
PyTorch Infer Utils This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model infer
Code for Environment Inference for Invariant Learning (ICML 2020 UDL Workshop Paper)
Environment Inference for Invariant Learning This code accompanies the paper Environment Inference for Invariant Learning, which appears at ICML 2021.
Multiple style transfer via variational autoencoder
ST-VAE Multiple style transfer via variational autoencoder By Zhi-Song Liu, Vicky Kalogeiton and Marie-Paule Cani This repo only provides simple testi
Simulation-based inference for the Galactic Center Excess
Simulation-based inference for the Galactic Center Excess Siddharth Mishra-Sharma and Kyle Cranmer Abstract The nature of the Fermi gamma-ray Galactic
Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution
unfoldedVBA Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution This repository contains the Pytorch implementation of the unrolled
Exploring the link between uncertainty estimates obtained via "exact" Bayesian inference and out-of-distribution (OOD) detection.
Uncertainty-based OOD detection Exploring the link between uncertainty estimates obtained by "exact" Bayesian inference and out-of-distribution (OOD)
This repository implements variational graph auto encoder by Thomas Kipf.
Variational Graph Auto-encoder in Pytorch This repository implements variational graph auto-encoder by Thomas Kipf. For details of the model, refer to
Code related to the manuscript "Averting A Crisis In Simulation-Based Inference"
Abstract We present extensive empirical evidence showing that current Bayesian simulation-based inference algorithms are inadequate for the falsificat
Data Augmentation with Variational Autoencoders
Documentation Pyraug This library provides a way to perform Data Augmentation using Variational Autoencoders in a reliable way even in challenging con
Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders
Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders
AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition
AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition [ArXiv] [Project Page] This repository is the official implementation of AdaMML:
Huggingface inference with GPU Docker on AWS
This repository contains code to containerize and deploy a GPU docker on AWS for summarization task. Find a detailed blogpost here Youtube Video Versi
TensorFlow implementation of "Variational Inference with Normalizing Flows"
[TensorFlow 2] Variational Inference with Normalizing Flows TensorFlow implementation of "Variational Inference with Normalizing Flows" [1] Concept Co
PyTorch Implementation of [1611.06440] Pruning Convolutional Neural Networks for Resource Efficient Inference
PyTorch implementation of [1611.06440 Pruning Convolutional Neural Networks for Resource Efficient Inference] This demonstrates pruning a VGG16 based
BMInf (Big Model Inference) is a low-resource inference package for large-scale pretrained language models (PLMs).
BMInf (Big Model Inference) is a low-resource inference package for large-scale pretrained language models (PLMs).
Tacotron 2 - PyTorch implementation with faster-than-realtime inference
Tacotron 2 (without wavenet) PyTorch implementation of Natural TTS Synthesis By Conditioning Wavenet On Mel Spectrogram Predictions. This implementati
Recurrent Variational Autoencoder that generates sequential data implemented with pytorch
Pytorch Recurrent Variational Autoencoder Model: This is the implementation of Samuel Bowman's Generating Sentences from a Continuous Space with Kim's
This repo in the implementation of EMNLP'21 paper "SPARQLing Database Queries from Intermediate Question Decompositions" by Irina Saparina, Anton Osokin
SPARQLing Database Queries from Intermediate Question Decompositions This repo is the implementation of the following paper: SPARQLing Database Querie
Abstractive opinion summarization system (SelSum) and the largest dataset of Amazon product summaries (AmaSum). EMNLP 2021 conference paper.
Learning Opinion Summarizers by Selecting Informative Reviews This repository contains the codebase and the dataset for the corresponding EMNLP 2021
Visions provides an extensible suite of tools to support common data analysis operations
Visions And these visions of data types, they kept us up past the dawn. Visions provides an extensible suite of tools to support common data analysis
Klara is a static analysis tools to automatic generate test case, based on SMT (z3) solver, with a powerful ast level inference system.
Automatic test case generation for python and static analysis library
This repository contains a set of codes to run (i.e., train, perform inference with, evaluate) a diarization method called EEND-vector-clustering.
EEND-vector clustering The EEND-vector clustering (End-to-End-Neural-Diarization-vector clustering) is a speaker diarization framework that integrates
This repository contains the PyTorch implementation of the paper STaCK: Sentence Ordering with Temporal Commonsense Knowledge appearing at EMNLP 2021.
STaCK: Sentence Ordering with Temporal Commonsense Knowledge This repository contains the pytorch implementation of the paper STaCK: Sentence Ordering
Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting (ICCV, 2021)
DKPNet ICCV 2021 Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting Baseline of DKPNet is availa