1128 Repositories
Python virtual-adversarial-training Libraries
Scheme for training and applying a label propagation framework
Factorisation-based Image Labelling Overview This is a scheme for training and applying the factorisation-based image labelling (FIL) framework. Some
Resilience from Diversity: Population-based approach to harden models against adversarial attacks
Resilience from Diversity: Population-based approach to harden models against adversarial attacks Requirements To install requirements: pip install -r
The source code and dataset for the RecGURU paper (WSDM 2022)
RecGURU About The Project Source code and baselines for the RecGURU paper "RecGURU: Adversarial Learning of Generalized User Representations for Cross
A tutorial on training a DarkNet YOLOv4 model for the CrowdHuman dataset
YOLOv4 CrowdHuman Tutorial This is a tutorial demonstrating how to train a YOLOv4 people detector using Darknet and the CrowdHuman dataset. Table of c
Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).
Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).
A Python toolbox to create adversarial examples that fool neural networks in PyTorch, TensorFlow, and JAX
Foolbox Native: Fast adversarial attacks to benchmark the robustness of machine learning models in PyTorch, TensorFlow, and JAX Foolbox is a Python li
Neural network graphs and training metrics for PyTorch, Tensorflow, and Keras.
HiddenLayer A lightweight library for neural network graphs and training metrics for PyTorch, Tensorflow, and Keras. HiddenLayer is simple, easy to ex
SageMaker Python SDK is an open source library for training and deploying machine learning models on Amazon SageMaker.
SageMaker Python SDK SageMaker Python SDK is an open source library for training and deploying machine learning models on Amazon SageMaker. With the S
A denoising autoencoder + adversarial losses and attention mechanisms for face swapping.
faceswap-GAN Adding Adversarial loss and perceptual loss (VGGface) to deepfakes'(reddit user) auto-encoder architecture. Updates Date Update 2018-08-2
Python implementation of an automatic parallel parking system in a virtual environment, including path planning, path tracking, and parallel parking
Automatic Parallel Parking: Path Planning, Path Tracking & Control This repository contains a python implementation of an automatic parallel parking s
Automatically deletes Capital One Eno virtual cards for when you've made a couple too many.
eno-delete Automatically deletes Capital One Eno virtual cards for when you've made a couple too many. Warning: Program will delete ALL virtual cards
pyToledo is a Python library to interact with the common virtual learning environment for the Association KU Leuven (Toledo).
pyToledo pyToledo is a Python library to interact with the common virtual learning environment for the Association KU Leuven a.k.a Toledo. Motivation
Code for the paper "SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness" (NeurIPS 2021)
SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness (NeurIPS2021) This repository contains code for the paper "Smo
Official PyTorch implementation for "Low Precision Decentralized Distributed Training with Heterogenous Data"
Low Precision Decentralized Training with Heterogenous Data Official PyTorch implementation for "Low Precision Decentralized Distributed Training with
Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).
Fisher Induced Sparse uncHanging (FISH) Mask This repo contains the code for Fisher Induced Sparse uncHanging (FISH) Mask training, from "Training Neu
Official PyTorch implementation of "BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation" (NeurIPS 2021)
BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation Official PyTorch implementation of the NeurIPS 2021 paper Mingcong Liu, Qiang
Simulation code and tutorial for BBHnet training data
Simulation Dataset for BBHnet NOTE: OLD README, UPDATE IN PROGRESS We generate simulation dataset to train BBHnet, our deep learning framework for det
Multi-modal Content Creation Model Training Infrastructure including the FACT model (AI Choreographer) implementation.
AI Choreographer: Music Conditioned 3D Dance Generation with AIST++ [ICCV-2021]. Overview This package contains the model implementation and training
PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.
PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.
Pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks."
alpha-GAN Unofficial pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks." arXi
Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models
Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models, under review at ICLR 2017 requirements: T
Generating Videos with Scene Dynamics
Generating Videos with Scene Dynamics This repository contains an implementation of Generating Videos with Scene Dynamics by Carl Vondrick, Hamed Pirs
Unrolled Generative Adversarial Networks
Unrolled Generative Adversarial Networks Luke Metz, Ben Poole, David Pfau, Jascha Sohl-Dickstein arxiv:1611.02163 This repo contains an example notebo
Chainer implementation of recent GAN variants
Chainer-GAN-lib This repository collects chainer implementation of state-of-the-art GAN algorithms. These codes are evaluated with the inception score
Stacked Generative Adversarial Networks
Stacked Generative Adversarial Networks This repository contains code for the paper "Stacked Generative Adversarial Networks", CVPR 2017. Part of the
Semantic-aware Grad-GAN for Virtual-to-Real Urban Scene Adaption
SG-GAN TensorFlow implementation of SG-GAN. Prerequisites TensorFlow (implemented in v1.3) numpy scipy pillow Getting Started Train Prepare dataset. W
Implementation of Sequence Generative Adversarial Nets with Policy Gradient
SeqGAN Requirements: Tensorflow r1.0.1 Python 2.7 CUDA 7.5+ (For GPU) Introduction Apply Generative Adversarial Nets to generating sequences of discre
RP-GAN: Stable GAN Training with Random Projections
RP-GAN: Stable GAN Training with Random Projections This repository contains a reference implementation of the algorithm described in the paper: Behna
Code for training and evaluation of the model from "Language Generation with Recurrent Generative Adversarial Networks without Pre-training"
Language Generation with Recurrent Generative Adversarial Networks without Pre-training Code for training and evaluation of the model from "Language G
Learning kernels to maximize the power of MMD tests
Code for the paper "Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy" (arXiv:1611.04488; published at ICLR 2017), by Douga
Code for reproducing key results in the paper "InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets"
Status: Archive (code is provided as-is, no updates expected) InfoGAN Code for reproducing key results in the paper InfoGAN: Interpretable Representat
Generating Images with Recurrent Adversarial Networks
Generating Images with Recurrent Adversarial Networks Python (Theano) implementation of Generating Images with Recurrent Adversarial Networks code pro
GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data
GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data By Shuchang Zhou, Taihong Xiao, Yi Yang, Dieqiao Feng, Qinyao He, W
Create images and texts with the First Order Generative Adversarial Networks
First Order Divergence for training GANs This repository contains code accompanying the paper First Order Generative Advesarial Netoworks The majority
Learning infinite-resolution image processing with GAN and RL from unpaired image datasets, using a differentiable photo editing model.
Exposure: A White-Box Photo Post-Processing Framework ACM Transactions on Graphics (presented at SIGGRAPH 2018) Yuanming Hu1,2, Hao He1,2, Chenxi Xu1,
A stable algorithm for GAN training
DRAGAN (Deep Regret Analytic Generative Adversarial Networks) Link to our paper - https://arxiv.org/abs/1705.07215 Pytorch implementation (thanks!) -
DeLiGAN - This project is an implementation of the Generative Adversarial Network
This project is an implementation of the Generative Adversarial Network proposed in our CVPR 2017 paper - DeLiGAN : Generative Adversarial Net
Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models (published in ICLR2018)
Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models Pouya Samangouei*, Maya Kabkab*, Rama Chellappa [*: authors co
Deep Convolutional Generative Adversarial Networks
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks Alec Radford, Luke Metz, Soumith Chintala All images in t
Generative Adversarial Networks for High Energy Physics extended to a multi-layer calorimeter simulation
CaloGAN Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative Adversarial Networks. This repository c
Code for ICLR2018 paper: Improving GAN Training via Binarized Representation Entropy (BRE) Regularization - Y. Cao · W Ding · Y.C. Lui · R. Huang
code for "Improving GAN Training via Binarized Representation Entropy (BRE) Regularization" (ICLR2018 paper) paper: https://arxiv.org/abs/1805.03644 G
Toward Multimodal Image-to-Image Translation
BicycleGAN Project Page | Paper | Video Pytorch implementation for multimodal image-to-image translation. For example, given the same night image, our
Bayesian Generative Adversarial Networks in Tensorflow
Bayesian Generative Adversarial Networks in Tensorflow This repository contains the Tensorflow implementation of the Bayesian GAN by Yunus Saatchi and
Pytorch implementation AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks
AttnGAN Pytorch implementation for reproducing AttnGAN results in the paper AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative
Official repository for ABC-GAN
ABC-GAN The work represented in this repository is the result of a 14 week semesterthesis on photo-realistic image generation using generative adversa
🔥3D-RecGAN in Tensorflow (ICCV Workshops 2017)
3D Object Reconstruction from a Single Depth View with Adversarial Learning Bo Yang, Hongkai Wen, Sen Wang, Ronald Clark, Andrew Markham, Niki Trigoni
A repository for the paper "Improved Adversarial Systems for 3D Object Generation and Reconstruction".
Improved Adversarial Systems for 3D Object Generation and Reconstruction: This is a repository for the paper "Improved Adversarial Systems for 3D Obje
Torch implementation of various types of GAN (e.g. DCGAN, ALI, Context-encoder, DiscoGAN, CycleGAN, EBGAN, LSGAN)
gans-collection.torch Torch implementation of various types of GANs (e.g. DCGAN, ALI, Context-encoder, DiscoGAN, CycleGAN, EBGAN). Note that EBGAN and
Tensorflow Implementation of the paper "Spectral Normalization for Generative Adversarial Networks" (ICML 2017 workshop)
tf-SNDCGAN Tensorflow implementation of the paper "Spectral Normalization for Generative Adversarial Networks" (https://www.researchgate.net/publicati
TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently.
Adversarial Chess TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently. Requirements To run
Training, generation, and analysis code for Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics
Location-Aware Generative Adversarial Networks (LAGAN) for Physics Synthesis This repository contains all the code used in L. de Oliveira (@lukedeo),
TensorFlow implementation of "Learning from Simulated and Unsupervised Images through Adversarial Training"
Simulated+Unsupervised (S+U) Learning in TensorFlow TensorFlow implementation of Learning from Simulated and Unsupervised Images through Adversarial T
A TensorFlow Implementation of "Deep Multi-Scale Video Prediction Beyond Mean Square Error" by Mathieu, Couprie & LeCun.
Adversarial Video Generation This project implements a generative adversarial network to predict future frames of video, as detailed in "Deep Multi-Sc
SalGAN: Visual Saliency Prediction with Generative Adversarial Networks
SalGAN: Visual Saliency Prediction with Adversarial Networks Junting Pan Cristian Canton Ferrer Kevin McGuinness Noel O'Connor Jordi Torres Elisa Sayr
Train CPPNs as a Generative Model, using Generative Adversarial Networks and Variational Autoencoder techniques to produce high resolution images.
cppn-gan-vae tensorflow Train Compositional Pattern Producing Network as a Generative Model, using Generative Adversarial Networks and Variational Aut
Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"
Photo-Realistic-Super-Resoluton Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network" [Paper]
[CVPR 2016] Unsupervised Feature Learning by Image Inpainting using GANs
Context Encoders: Feature Learning by Inpainting CVPR 2016 [Project Website] [Imagenet Results] Sample results on held-out images: This is the trainin
Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks
MGANs Training & Testing code (torch), pre-trained models and supplementary materials for "Precomputed Real-Time Texture Synthesis with Markovian Gene
Software that can generate photos from paintings, turn horses into zebras, perform style transfer, and more.
CycleGAN PyTorch | project page | paper Torch implementation for learning an image-to-image translation (i.e. pix2pix) without input-output pairs, for
Image-to-image translation with conditional adversarial nets
pix2pix Project | Arxiv | PyTorch Torch implementation for learning a mapping from input images to output images, for example: Image-to-Image Translat
Age Progression/Regression by Conditional Adversarial Autoencoder
Age Progression/Regression by Conditional Adversarial Autoencoder (CAAE) TensorFlow implementation of the algorithm in the paper Age Progression/Regre
Image De-raining Using a Conditional Generative Adversarial Network
Image De-raining Using a Conditional Generative Adversarial Network [Paper Link] [Project Page] He Zhang, Vishwanath Sindagi, Vishal M. Patel In this
Fully Convolutional Refined Auto Encoding Generative Adversarial Networks for 3D Multi Object Scenes
Fully Convolutional Refined Auto-Encoding Generative Adversarial Networks for 3D Multi Object Scenes This repository contains the source code for Full
3D Generative Adversarial Network
Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling This repository contains pre-trained models and sampling
Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks
pix2vox [Demonstration video] Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks. Generated samples Single-category generation M
Generative Adversarial Text-to-Image Synthesis
###Generative Adversarial Text-to-Image Synthesis Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, Honglak Lee This is the
Text to image synthesis using thought vectors
Text To Image Synthesis Using Thought Vectors This is an experimental tensorflow implementation of synthesizing images from captions using Skip Though
StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks
StackGAN Pytorch implementation Inception score evaluation StackGAN-v2-pytorch Tensorflow implementation for reproducing main results in the paper Sta
A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions
A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions
Interactive Image Generation via Generative Adversarial Networks
iGAN: Interactive Image Generation via Generative Adversarial Networks Project | Youtube | Paper Recent projects: [pix2pix]: Torch implementation for
A DCGAN to generate anime faces using custom mined dataset
Anime-Face-GAN-Keras A DCGAN to generate anime faces using custom dataset in Keras. Dataset The dataset is created by crawling anime database websites
A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations.
IllustrationGAN A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations. Generated Images
Learning Chinese Character style with conditional GAN
zi2zi: Master Chinese Calligraphy with Conditional Adversarial Networks Introduction Learning eastern asian language typefaces with GAN. zi2zi(字到字, me
Tensorflow implementation of "BEGAN: Boundary Equilibrium Generative Adversarial Networks"
BEGAN in Tensorflow Tensorflow implementation of BEGAN: Boundary Equilibrium Generative Adversarial Networks. Requirements Python 2.7 or 3.x Pillow tq
Code for the paper "Improved Techniques for Training GANs"
Status: Archive (code is provided as-is, no updates expected) improved-gan code for the paper "Improved Techniques for Training GANs" MNIST, SVHN, CIF
Code and hyperparameters for the paper "Generative Adversarial Networks"
Generative Adversarial Networks This repository contains the code and hyperparameters for the paper: "Generative Adversarial Networks." Ian J. Goodfel
A hobby project which includes a hand-gesture based virtual piano using a mobile phone camera and OpenCV library functions
Overview This is a hobby project which includes a hand-gesture controlled virtual piano using an android phone camera and some OpenCV library. My moti
🔎 Super-scale your images and run experiments with Residual Dense and Adversarial Networks.
Image Super-Resolution (ISR) The goal of this project is to upscale and improve the quality of low resolution images. This project contains Keras impl
Curated list of awesome GAN applications and demo
gans-awesome-applications Curated list of awesome GAN applications and demonstrations. Note: General GAN papers targeting simple image generation such
A list of all named GANs!
The GAN Zoo Every week, new GAN papers are coming out and it's hard to keep track of them all, not to mention the incredibly creative ways in which re
Collection of generative models in Tensorflow
tensorflow-generative-model-collections Tensorflow implementation of various GANs and VAEs. Related Repositories Pytorch version Pytorch version of th
High performance distributed framework for training deep learning recommendation models based on PyTorch.
High performance distributed framework for training deep learning recommendation models based on PyTorch.
Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks
SSRL-for-image-classification Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks
CCQA A New Web-Scale Question Answering Dataset for Model Pre-Training
CCQA: A New Web-Scale Question Answering Dataset for Model Pre-Training This is the official repository for the code and models of the paper CCQA: A N
Pytorch implementation of forward and inverse Haar Wavelets 2D
Pytorch implementation of forward and inverse Haar Wavelets 2D
[NeurIPS 2021] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data
Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data (NeurIPS 2021) This repository will provide the official PyTorch implementa
Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization
Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization This repository contains the source code for the paper (link wi
⚖️🔁🔮🕵️♂️🦹🖼️ Code for *Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances* paper.
Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances This repository contains the code for Measuring the Co
Generating Band-Limited Adversarial Surfaces Using Neural Networks
Generating Band-Limited Adversarial Surfaces Using Neural Networks This is the official repository of the technical report that was published on arXiv
Improving the robustness and performance of biomedical NLP models through adversarial training
RobustBioNLP Improving the robustness and performance of biomedical NLP models through adversarial training In this repository you can find suppliment
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning Authors: Yixuan Su, Fangyu Liu, Zaiqiao Meng, Lei Shu, Ehsan Shareghi, and Nig
Improving the Transferability of Adversarial Examples with Resized-Diverse-Inputs, Diversity-Ensemble and Region Fitting
Improving the Transferability of Adversarial Examples with Resized-Diverse-Inputs, Diversity-Ensemble and Region Fitting
AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention
AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention. AdaNet buil
🚪✊Knock Knock: Get notified when your training ends with only two additional lines of code
Knock Knock A small library to get a notification when your training is complete or when it crashes during the process with two additional lines of co
Fast, modular reference implementation and easy training of Semantic Segmentation algorithms in PyTorch.
TorchSeg This project aims at providing a fast, modular reference implementation for semantic segmentation models using PyTorch. Highlights Modular De
Learning to Adapt Structured Output Space for Semantic Segmentation, CVPR 2018 (spotlight)
Learning to Adapt Structured Output Space for Semantic Segmentation Pytorch implementation of our method for adapting semantic segmentation from the s
Chainer Implementation of Semantic Segmentation using Adversarial Networks
Semantic Segmentation using Adversarial Networks Requirements Chainer (1.23.0) Differences Use of FCN-VGG16 instead of Dilated8 as Segmentor. Caution
Training PSPNet in Tensorflow. Reproduce the performance from the paper.
Training Reproduce of PSPNet. (Updated 2021/04/09. Authors of PSPNet have provided a Pytorch implementation for PSPNet and their new work with support
This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation.
ERFNet This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation. NEW!! New PyTorch
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation.
ENet This work has been published in arXiv: ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. Packages: train contains too