2464 Repositories
Python Dust-model-dichotomous-performance-analysis Libraries
Directions overlay for working with pandas in an analysis environment
dovpanda Directions OVer PANDAs Directions are hints and tips for using pandas in an analysis environment. dovpanda is an overlay companion for workin
A Python package for manipulating 2-dimensional tabular data structures
datatable This is a Python package for manipulating 2-dimensional tabular data structures (aka data frames). It is close in spirit to pandas or SFrame
High performance datastore for time series and tick data
Arctic TimeSeries and Tick store Arctic is a high performance datastore for numeric data. It supports Pandas, numpy arrays and pickled objects out-of-
Universal 1d/2d data containers with Transformers functionality for data analysis.
XPandas (extended Pandas) implements 1D and 2D data containers for storing type-heterogeneous tabular data of any type, and encapsulates feature extra
Create HTML profiling reports from pandas DataFrame objects
Pandas Profiling Documentation | Slack | Stack Overflow Generates profile reports from a pandas DataFrame. The pandas df.describe() function is great
Model analysis tools for TensorFlow
TensorFlow Model Analysis TensorFlow Model Analysis (TFMA) is a library for evaluating TensorFlow models. It allows users to evaluate their models on
Python Library for Model Interpretation/Explanations
Skater Skater is a unified framework to enable Model Interpretation for all forms of model to help one build an Interpretable machine learning system
L2X - Code for replicating the experiments in the paper Learning to Explain: An Information-Theoretic Perspective on Model Interpretation.
L2X Code for replicating the experiments in the paper Learning to Explain: An Information-Theoretic Perspective on Model Interpretation at ICML 2018,
FairML - is a python toolbox auditing the machine learning models for bias.
======== FairML: Auditing Black-Box Predictive Models FairML is a python toolbox auditing the machine learning models for bias. Description Predictive
A game theoretic approach to explain the output of any machine learning model.
SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model. It connects optimal credit allo
Visual analysis and diagnostic tools to facilitate machine learning model selection.
Yellowbrick Visual analysis and diagnostic tools to facilitate machine learning model selection. What is Yellowbrick? Yellowbrick is a suite of visual
Contrastive Explanation (Foil Trees), developed at TNO/Utrecht University
Contrastive Explanation (Foil Trees) Contrastive and counterfactual explanations for machine learning (ML) Marcel Robeer (2018-2020), TNO/Utrecht Univ
Code for "High-Precision Model-Agnostic Explanations" paper
Anchor This repository has code for the paper High-Precision Model-Agnostic Explanations. An anchor explanation is a rule that sufficiently “anchors”
Train/evaluate a Keras model, get metrics streamed to a dashboard in your browser.
Hera Train/evaluate a Keras model, get metrics streamed to a dashboard in your browser. Setting up Step 1. Plant the spy Install the package pip
Mesh TensorFlow: Model Parallelism Made Easier
Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying
📝 Wrapper library for text generation / language models at char and word level with RNN in TensorFlow
tensorlm Generate Shakespeare poems with 4 lines of code. Installation tensorlm is written in / for Python 3.4+ and TensorFlow 1.1+ pip3 install tenso
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.
Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.
Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a
High performance implementation of Extreme Learning Machines (fast randomized neural networks).
High Performance toolbox for Extreme Learning Machines. Extreme learning machines (ELM) are a particular kind of Artificial Neural Networks, which sol
Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.
Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r
A Python Package to Tackle the Curse of Imbalanced Datasets in Machine Learning
imbalanced-learn imbalanced-learn is a python package offering a number of re-sampling techniques commonly used in datasets showing strong between-cla
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.
Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista
Probabilistic programming framework that facilitates objective model selection for time-varying parameter models.
Time series analysis today is an important cornerstone of quantitative science in many disciplines, including natural and life sciences as well as eco
A machine learning toolkit dedicated to time-series data
tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti
50% faster, 50% less RAM Machine Learning. Numba rewritten Sklearn. SVD, NNMF, PCA, LinearReg, RidgeReg, Randomized, Truncated SVD/PCA, CSR Matrices all 50+% faster
[Due to the time taken @ uni, work + hell breaking loose in my life, since things have calmed down a bit, will continue commiting!!!] [By the way, I'm
A library of extension and helper modules for Python's data analysis and machine learning libraries.
Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2021 Links Doc
A toolkit for making real world machine learning and data analysis applications in C++
dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.
What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin
Implementation of COCO-LM, Correcting and Contrasting Text Sequences for Language Model Pretraining, in Pytorch
COCO LM Pretraining (wip) Implementation of COCO-LM, Correcting and Contrasting Text Sequences for Language Model Pretraining, in Pytorch. They were a
A modular, high performance, headless e-commerce platform built with Python, GraphQL, Django, and ReactJS.
Saleor Commerce Customer-centric e-commerce on a modern stack A headless, GraphQL-first e-commerce platform delivering ultra-fast, dynamic, personaliz
🍊 :bar_chart: :bulb: Orange: Interactive data analysis
Orange Data Mining Orange is a data mining and visualization toolbox for novice and expert alike. To explore data with Orange, one requires no program
OPEM (Open Source PEM Fuel Cell Simulation Tool)
Table of contents What is PEM? Overview Installation Usage Executable Library Telegram Bot Try OPEM in Your Browser! MATLAB Issues & Bug Reports Contr
A modular single-molecule analysis interface
MOSAIC: A modular single-molecule analysis interface MOSAIC is a single molecule analysis toolbox that automatically decodes multi-state nanopore data
An open-source application for biological image analysis
CellProfiler is a free open-source software designed to enable biologists without training in computer vision or programming to quantitatively measure
Open source platform for the machine learning lifecycle
MLflow: A Machine Learning Lifecycle Platform MLflow is a platform to streamline machine learning development, including tracking experiments, packagi
Real-time audio visualizations (spectrum, spectrogram, etc.)
Friture Friture is an application to visualize and analyze live audio data in real-time. Friture displays audio data in several widgets, such as a sco
FastAPI Skeleton App to serve machine learning models production-ready.
FastAPI Model Server Skeleton Serving machine learning models production-ready, fast, easy and secure powered by the great FastAPI by Sebastián Ramíre
🍯 16 honeypots in a single pypi package (DNS, HTTP Proxy, HTTP, HTTPS, SSH, POP3, IMAP, STMP, VNC, SMB, SOCKS5, Redis, TELNET, Postgres & MySQL)
Easy to setup customizable honeypots for monitoring network traffic, bots activities and username\password credentials. The current available honeypot
Pytorch Code for "Medical Transformer: Gated Axial-Attention for Medical Image Segmentation"
Medical-Transformer Pytorch Code for the paper "Medical Transformer: Gated Axial-Attention for Medical Image Segmentation" About this repo: This repo
A demo of Prometheus+Grafana for monitoring an ML model served with FastAPI.
ml-monitoring Jeremy Jordan This repository provides an example setup for monitoring an ML system deployed on Kubernetes.
Implementation of SETR model, Original paper: Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers.
SETR - Pytorch Since the original paper (Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers.) has no official
Model search is a framework that implements AutoML algorithms for model architecture search at scale
Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale. It aims to help researchers speed up their exploration process for finding the right model architecture for their classification problems (i.e., DNNs with different types of layers).
This is a new web-based photo management application. Run it on your home server and it will let you find the right photo from your collection on any device. Smart filtering is made possible by object recognition, location awareness, color analysis and other ML algorithms.
Photonix Photo Manager This is a photo management application based on web technologies. Run it on your home server and it will let you find what you
Python-based tools for document analysis and OCR
ocropy OCRopus is a collection of document analysis programs, not a turn-key OCR system. In order to apply it to your documents, you may need to do so
Gaphor is the simple modeling tool
Gaphor Gaphor is a UML and SysML modeling application written in Python. It is designed to be easy to use, while still being powerful. Gaphor implemen
Bitcoin Clipper malware made in Python.
a BTC Clipper or a "Bitcoin Clipper" is a type of malware designed to target cryptocurrency transactions.
naked is a Python tool which allows you to strip a model and only keep what matters for making predictions.
naked is a Python tool which allows you to strip a model and only keep what matters for making predictions. The result is a pure Python function with no third-party dependencies that you can simply copy/paste wherever you wish.
BitPack is a practical tool to efficiently save ultra-low precision/mixed-precision quantized models.
BitPack is a practical tool that can efficiently save quantized neural network models with mixed bitwidth.
BaseSpec is a system that performs a comparative analysis of baseband implementation and the specifications of cellular networks.
BaseSpec is a system that performs a comparative analysis of baseband implementation and the specifications of cellular networks. The key intuition of BaseSpec is that a message decoder in baseband software embeds the protocol specification in a machine-friendly structure to parse incoming messages;
The first machine learning framework that encourages learning ML concepts instead of memorizing class functions.
SeaLion is designed to teach today's aspiring ml-engineers the popular machine learning concepts of today in a way that gives both intuition and ways of application. We do this through concise algorithms that do the job in the least jargon possible and examples to guide you through every step of the way.
Improving XGBoost survival analysis with embeddings and debiased estimators
xgbse: XGBoost Survival Embeddings "There are two cultures in the use of statistical modeling to reach conclusions from data
ANalyse is a vehicle network analysis and attack tool.
CANalyse is a tool built to analyze the log files to find out unique datasets automatically and able to connect to simple user interfaces suc
ForecastGA is a Python tool to forecast Google Analytics data using several popular time series models.
ForecastGA is a tool that combines a couple of popular libraries, Atspy and googleanalytics, with a few enhancements.
计算机视觉中用到的注意力模块和其他即插即用模块PyTorch Implementation Collection of Attention Module and Plug&Play Module
PyTorch实现多种计算机视觉中网络设计中用到的Attention机制,还收集了一些即插即用模块。由于能力有限精力有限,可能很多模块并没有包括进来,有任何的建议或者改进,可以提交issue或者进行PR。
Kindle is an easy model build package for PyTorch.
Kindle is an easy model build package for PyTorch. Building a deep learning model became so simple that almost all model can be made by copy and paste from other existing model codes. So why code? when we can simply build a model with yaml markup file. Kindle builds a model with no code but yaml file which its method is inspired from YOLOv5.
High-performance Async REST API, in Python. FastAPI + GINO + Arq + Uvicorn (w/ Redis and PostgreSQL).
fastapi-gino-arq-uvicorn High-performance Async REST API, in Python. FastAPI + GINO + Arq + Uvicorn (powered by Redis & PostgreSQL). Contents Get Star
Docker image with Uvicorn managed by Gunicorn for high-performance FastAPI web applications in Python 3.6 and above with performance auto-tuning. Optionally with Alpine Linux.
Supported tags and respective Dockerfile links python3.8, latest (Dockerfile) python3.7, (Dockerfile) python3.6 (Dockerfile) python3.8-slim (Dockerfil
FastAPI Skeleton App to serve machine learning models production-ready.
FastAPI Model Server Skeleton Serving machine learning models production-ready, fast, easy and secure powered by the great FastAPI by Sebastián Ramíre
Python package for hypergraph analysis and visualization.
The HyperNetX library provides classes and methods for the analysis and visualization of complex network data. HyperNetX uses data structures designed to represent set systems containing nested data and/or multi-way relationships. The library generalizes traditional graph metrics to hypergraphs.
Summarization, translation, sentiment-analysis, text-generation and more at blazing speed using a T5 version implemented in ONNX.
Summarization, translation, Q&A, text generation and more at blazing speed using a T5 version implemented in ONNX. This package is still in alpha stag
Text vectorization tool to outperform TFIDF for classification tasks
WHAT: Supervised text vectorization tool Textvec is a text vectorization tool, with the aim to implement all the "classic" text vectorization NLP meth
NLP library designed for reproducible experimentation management
Welcome to the Transfer NLP library, a framework built on top of PyTorch to promote reproducible experimentation and Transfer Learning in NLP You can
NeuralQA: A Usable Library for Question Answering on Large Datasets with BERT
NeuralQA: A Usable Library for (Extractive) Question Answering on Large Datasets with BERT Still in alpha, lots of changes anticipated. View demo on n
An Analysis Toolkit for Natural Language Generation (Translation, Captioning, Summarization, etc.)
VizSeq is a Python toolkit for visual analysis on text generation tasks like machine translation, summarization, image captioning, speech translation
Textpipe: clean and extract metadata from text
textpipe: clean and extract metadata from text textpipe is a Python package for converting raw text in to clean, readable text and extracting metadata
Kashgari is a production-level NLP Transfer learning framework built on top of tf.keras for text-labeling and text-classification, includes Word2Vec, BERT, and GPT2 Language Embedding.
Kashgari Overview | Performance | Installation | Documentation | Contributing 🎉 🎉 🎉 We released the 2.0.0 version with TF2 Support. 🎉 🎉 🎉 If you
Scikit-learn style model finetuning for NLP
Scikit-learn style model finetuning for NLP Finetune is a library that allows users to leverage state-of-the-art pretrained NLP models for a wide vari
Sequence-to-sequence framework with a focus on Neural Machine Translation based on Apache MXNet
Sockeye This package contains the Sockeye project, an open-source sequence-to-sequence framework for Neural Machine Translation based on Apache MXNet
Python package to easily retrain OpenAI's GPT-2 text-generating model on new texts
gpt-2-simple A simple Python package that wraps existing model fine-tuning and generation scripts for OpenAI's GPT-2 text generation model (specifical
A model library for exploring state-of-the-art deep learning topologies and techniques for optimizing Natural Language Processing neural networks
A Deep Learning NLP/NLU library by Intel® AI Lab Overview | Models | Installation | Examples | Documentation | Tutorials | Contributing NLP Architect
Beautiful visualizations of how language differs among document types.
Scattertext 0.1.0.0 A tool for finding distinguishing terms in corpora and displaying them in an interactive HTML scatter plot. Points corresponding t
🛸 Use pretrained transformers like BERT, XLNet and GPT-2 in spaCy
spacy-transformers: Use pretrained transformers like BERT, XLNet and GPT-2 in spaCy This package provides spaCy components and architectures to use tr
:mag: End-to-End Framework for building natural language search interfaces to data by utilizing Transformers and the State-of-the-Art of NLP. Supporting DPR, Elasticsearch, HuggingFace’s Modelhub and much more!
Haystack is an end-to-end framework that enables you to build powerful and production-ready pipelines for different search use cases. Whether you want
State of the Art Natural Language Processing
Spark NLP: State of the Art Natural Language Processing Spark NLP is a Natural Language Processing library built on top of Apache Spark ML. It provide
VADER Sentiment Analysis. VADER (Valence Aware Dictionary and sEntiment Reasoner) is a lexicon and rule-based sentiment analysis tool that is specifically attuned to sentiments expressed in social media, and works well on texts from other domains.
VADER-Sentiment-Analysis VADER (Valence Aware Dictionary and sEntiment Reasoner) is a lexicon and rule-based sentiment analysis tool that is specifica
💥 Fast State-of-the-Art Tokenizers optimized for Research and Production
Provides an implementation of today's most used tokenizers, with a focus on performance and versatility. Main features: Train new vocabularies and tok
Simple, Pythonic, text processing--Sentiment analysis, part-of-speech tagging, noun phrase extraction, translation, and more.
TextBlob: Simplified Text Processing Homepage: https://textblob.readthedocs.io/ TextBlob is a Python (2 and 3) library for processing textual data. It
🤗Transformers: State-of-the-art Natural Language Processing for Pytorch and TensorFlow 2.0.
State-of-the-art Natural Language Processing for PyTorch and TensorFlow 2.0 🤗 Transformers provides thousands of pretrained models to perform tasks o
Drag’n’drop Pivot Tables and Charts for Jupyter/IPython Notebook, care of PivotTable.js
pivottablejs: the Python module Drag’n’drop Pivot Tables and Charts for Jupyter/IPython Notebook, care of PivotTable.js Installation pip install pivot
A grammar of graphics for Python
plotnine Latest Release License DOI Build Status Coverage Documentation plotnine is an implementation of a grammar of graphics in Python, it is based
Visualize and compare datasets, target values and associations, with one line of code.
In-depth EDA (target analysis, comparison, feature analysis, correlation) in two lines of code! Sweetviz is an open-source Python library that generat
3D plotting and mesh analysis through a streamlined interface for the Visualization Toolkit (VTK)
PyVista Deployment Build Status Metrics Citation License Community 3D plotting and mesh analysis through a streamlined interface for the Visualization
Missing data visualization module for Python.
missingno Messy datasets? Missing values? missingno provides a small toolset of flexible and easy-to-use missing data visualizations and utilities tha
Uniform Manifold Approximation and Projection
UMAP Uniform Manifold Approximation and Projection (UMAP) is a dimension reduction technique that can be used for visualisation similarly to t-SNE, bu
Create HTML profiling reports from pandas DataFrame objects
Pandas Profiling Documentation | Slack | Stack Overflow Generates profile reports from a pandas DataFrame. The pandas df.describe() function is great
Python tools for the corpus analysis of popular music.
CATCHY Corpus Analysis Tools for Computational Hook discovery Python tools for the corpus analysis of popular music recordings. The tools can be used
commonfate 📦commonfate 📦 - Common Fate Model and Transform.
Common Fate Transform and Model for Python This package is a python implementation of the Common Fate Transform and Model to be used for audio source
Inner ear models for Python
cochlea cochlea is a collection of inner ear models. All models are easily accessible as Python functions. They take sound signal as input and return
Python Audio Analysis Library: Feature Extraction, Classification, Segmentation and Applications
A Python library for audio feature extraction, classification, segmentation and applications This doc contains general info. Click here for the comple
Pyroomacoustics is a package for audio signal processing for indoor applications. It was developed as a fast prototyping platform for beamforming algorithms in indoor scenarios.
Summary Pyroomacoustics is a software package aimed at the rapid development and testing of audio array processing algorithms. The content of the pack
A fast MDCT implementation using SciPy and FFTs
MDCT A fast MDCT implementation using SciPy and FFTs Installation As usual pip install mdct Dependencies NumPy SciPy STFT Usage import mdct spectrum
MongoEngine flask extension with WTF model forms support
Flask-MongoEngine Info: MongoEngine for Flask web applications. Repository: https://github.com/MongoEngine/flask-mongoengine About Flask-MongoEngine i
A FastAPI Middleware of joerick/pyinstrument to check your service performance.
fastapi_profiler A FastAPI Middleware of joerick/pyinstrument to check your service performance. 📣 Info A FastAPI Middleware of pyinstrument to check
A tool to convert AWS EC2 instances back and forth between On-Demand and Spot billing models.
ec2-spot-converter This tool converts existing AWS EC2 instances back and forth between On-Demand and 'persistent' Spot billing models while preservin
Code for the Shortformer model, from the paper by Ofir Press, Noah A. Smith and Mike Lewis.
Shortformer This repository contains the code and the final checkpoint of the Shortformer model. This file explains how to run our experiments on the
A neural-based binary analysis tool
A neural-based binary analysis tool Introduction This directory contains the demo of a neural-based binary analysis tool. We test the framework using
Docker Container wallstreetbets-sentiment-analysis
Docker Container wallstreetbets-sentiment-analysis A docker container using restful endpoints exposed on port 5000 "/analyze" to gather sentiment anal
TickerRain is an open-source web app that stores and analysis Reddit posts in a transparent and semi-interactive manner.
TickerRain is an open-source web app that stores and analysis Reddit posts in a transparent and semi-interactive manner
Efficient 3D Backbone Network for Temporal Modeling
VoV3D is an efficient and effective 3D backbone network for temporal modeling implemented on top of PySlowFast. Diverse Temporal Aggregation and
CPU inference engine that delivers unprecedented performance for sparse models
The DeepSparse Engine is a CPU runtime that delivers unprecedented performance by taking advantage of natural sparsity within neural networks to reduce compute required as well as accelerate memory bound workloads. It is focused on model deployment and scaling machine learning pipelines, fitting seamlessly into your existing deployments as an inference backend.