2563 Repositories
Python Neural-Network-Basics Libraries
Packaged, Pytorch-based, easy to use, cross-platform version of the CRAFT text detector
CRAFT: Character-Region Awareness For Text detection Packaged, Pytorch-based, easy to use, cross-platform version of the CRAFT text detector | Paper |
EAST for ICPR MTWI 2018 Challenge II (Text detection of network images)
EAST_ICPR2018: EAST for ICPR MTWI 2018 Challenge II (Text detection of network images) Introduction This is a repository forked from argman/EAST for t
AdvancedEAST is an algorithm used for Scene image text detect, which is primarily based on EAST, and the significant improvement was also made, which make long text predictions more accurate.https://github.com/huoyijie/raspberrypi-car
AdvancedEAST AdvancedEAST is an algorithm used for Scene image text detect, which is primarily based on EAST:An Efficient and Accurate Scene Text Dete
Detecting Text in Natural Image with Connectionist Text Proposal Network (ECCV'16)
Detecting Text in Natural Image with Connectionist Text Proposal Network The codes are used for implementing CTPN for scene text detection, described
keras复现场景文本检测网络CPTN: 《Detecting Text in Natural Image with Connectionist Text Proposal Network》;欢迎试用,关注,并反馈问题...
keras-ctpn [TOC] 说明 预测 训练 例子 4.1 ICDAR2015 4.1.1 带侧边细化 4.1.2 不带带侧边细化 4.1.3 做数据增广-水平翻转 4.2 ICDAR2017 4.3 其它数据集 toDoList 总结 说明 本工程是keras实现的CPTN: Detecti
text detection mainly based on ctpn model in tensorflow, id card detect, connectionist text proposal network
text-detection-ctpn Scene text detection based on ctpn (connectionist text proposal network). It is implemented in tensorflow. The origin paper can be
TensorFlow Implementation of FOTS, Fast Oriented Text Spotting with a Unified Network.
FOTS: Fast Oriented Text Spotting with a Unified Network I am still working on this repo. updates and detailed instructions are coming soon! Table of
An Implementation of the FOTS: Fast Oriented Text Spotting with a Unified Network
FOTS: Fast Oriented Text Spotting with a Unified Network Introduction This is a pytorch re-implementation of FOTS: Fast Oriented Text Spotting with a
This is a tensorflow re-implementation of PSENet: Shape Robust Text Detection with Progressive Scale Expansion Network.My blog:
PSENet: Shape Robust Text Detection with Progressive Scale Expansion Network Introduction This is a tensorflow re-implementation of PSENet: Shape Robu
Code for the paper STN-OCR: A single Neural Network for Text Detection and Text Recognition
STN-OCR: A single Neural Network for Text Detection and Text Recognition This repository contains the code for the paper: STN-OCR: A single Neural Net
A novel region proposal network for more general object detection ( including scene text detection ).
DeRPN: Taking a further step toward more general object detection DeRPN is a novel region proposal network which concentrates on improving the adaptiv
The code of "Mask TextSpotter: An End-to-End Trainable Neural Network for Spotting Text with Arbitrary Shapes"
Mask TextSpotter A Pytorch implementation of Mask TextSpotter along with its extension can be find here Introduction This is the official implementati
Repository for Scene Text Detection with Supervised Pyramid Context Network with tensorflow.
Scene-Text-Detection-with-SPCNET Unofficial repository for [Scene Text Detection with Supervised Pyramid Context Network][https://arxiv.org/abs/1811.0
Pytorch implementation of PSEnet with Pyramid Attention Network as feature extractor
Scene Text-Spotting based on PSEnet+CRNN Pytorch implementation of an end to end Text-Spotter with a PSEnet text detector and CRNN text recognizer. We
Corner-based Region Proposal Network
Corner-based Region Proposal Network CRPN is a two-stage detection framework for multi-oriented scene text. It employs corners to estimate the possibl
Table recognition inside douments using neural networks
TableTrainNet A simple project for training and testing table recognition in documents. This project was developed to make a neural network which reco
Use Convolutional Recurrent Neural Network to recognize the Handwritten line text image without pre segmentation into words or characters. Use CTC loss Function to train.
Handwritten Line Text Recognition using Deep Learning with Tensorflow Description Use Convolutional Recurrent Neural Network to recognize the Handwrit
Handwritten Text Recognition (HTR) system implemented with TensorFlow.
Handwritten Text Recognition with TensorFlow Update 2021: more robust model, faster dataloader, word beam search decoder also available for Windows Up
Handwritten Number Recognition using CNN and Character Segmentation
Handwritten-Number-Recognition-With-Image-Segmentation Info About this repository This Repository is aimed at reading handwritten images of numbers an
Handwriting Recognition System based on a deep Convolutional Recurrent Neural Network architecture
Handwriting Recognition System This repository is the Tensorflow implementation of the Handwriting Recognition System described in Handwriting Recogni
This repository lets you train neural networks models for performing end-to-end full-page handwriting recognition using the Apache MXNet deep learning frameworks on the IAM Dataset.
Handwritten Text Recognition (OCR) with MXNet Gluon These notebooks have been created by Jonathan Chung, as part of his internship as Applied Scientis
Page to PAGE Layout Analysis Tool
P2PaLA Page to PAGE Layout Analysis (P2PaLA) is a toolkit for Document Layout Analysis based on Neural Networks. 💥 Try our new DEMO for online baseli
MORAN: A Multi-Object Rectified Attention Network for Scene Text Recognition
MORAN: A Multi-Object Rectified Attention Network for Scene Text Recognition Python 2.7 Python 3.6 MORAN is a network with rectification mechanism for
Supplementary code for the paper "Meta-Solver for Neural Ordinary Differential Equations" https://arxiv.org/abs/2103.08561
Meta-Solver for Neural Ordinary Differential Equations Towards robust neural ODEs using parametrized solvers. Main idea Each Runge-Kutta (RK) solver w
TensorFlow code for the neural network presented in the paper: "Structural Language Models of Code" (ICML'2020)
SLM: Structural Language Models of Code This is an official implementation of the model described in: "Structural Language Models of Code" [PDF] To ap
[ICLR 2021, Spotlight] Large Scale Image Completion via Co-Modulated Generative Adversarial Networks
Large Scale Image Completion via Co-Modulated Generative Adversarial Networks, ICLR 2021 (Spotlight) Demo | Paper [NEW!] Time to play with our interac
Code for "Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks", CVPR 2021
Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks This repository contains the code that accompanies our CVPR 20
CVPR 2021: "Generating Diverse Structure for Image Inpainting With Hierarchical VQ-VAE"
Diverse Structure Inpainting ArXiv | Papar | Supplementary Material | BibTex This repository is for the CVPR 2021 paper, "Generating Diverse Structure
[CIKM 2019] Code and dataset for "Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Prediction"
FiGNN for CTR prediction The code and data for our paper in CIKM2019: Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Predicti
(under submission) Bayesian Integration of a Generative Prior for Image Restoration
BIGPrior: Towards Decoupling Learned Prior Hallucination and Data Fidelity in Image Restoration Authors: Majed El Helou, and Sabine Süsstrunk {Note: p
A spherical CNN for weather forecasting
DeepSphere-Weather - Deep Learning on the sphere for weather/climate applications. The code in this repository provides a scalable and flexible framew
Code for the paper "Training GANs with Stronger Augmentations via Contrastive Discriminator" (ICLR 2021)
Training GANs with Stronger Augmentations via Contrastive Discriminator (ICLR 2021) This repository contains the code for reproducing the paper: Train
Deep Dual Consecutive Network for Human Pose Estimation (CVPR2021)
Deep Dual Consecutive Network for Human Pose Estimation (CVPR2021) Introduction This is the official code of Deep Dual Consecutive Network for Human P
code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"
AttentiveNAS: Improving Neural Architecture Search via Attentive Sampling This repository contains PyTorch evaluation code, training code and pretrain
Implicit Graph Neural Networks
Implicit Graph Neural Networks This repository is the official PyTorch implementation of "Implicit Graph Neural Networks". Fangda Gu*, Heng Chang*, We
[ICLR 2021] HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark
HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark Accepted as a spotlight paper at ICLR 2021. Table of content File structure Prerequi
Old Photo Restoration (Official PyTorch Implementation)
Bringing Old Photo Back to Life (CVPR 2020 oral)
Simple command line tool for text to image generation using OpenAI's CLIP and Siren (Implicit neural representation network)
Simple command line tool for text to image generation using OpenAI's CLIP and Siren (Implicit neural representation network)
A curated list of neural network pruning resources.
A curated list of neural network pruning and related resources. Inspired by awesome-deep-vision, awesome-adversarial-machine-learning, awesome-deep-learning-papers and Awesome-NAS.
Learning Intents behind Interactions with Knowledge Graph for Recommendation, WWW2021
Learning Intents behind Interactions with Knowledge Graph for Recommendation This is our PyTorch implementation for the paper: Xiang Wang, Tinglin Hua
Code for "Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations"
Infinitely Deep Bayesian Neural Networks with SDEs This library contains JAX and Pytorch implementations of neural ODEs and Bayesian layers for stocha
This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.
BiPointNet: Binary Neural Network for Point Clouds Created by Haotong Qin, Zhongang Cai, Mingyuan Zhang, Yifu Ding, Haiyu Zhao, Shuai Yi, Xianglong Li
Official implementation of Self-supervised Graph Attention Networks (SuperGAT), ICLR 2021.
SuperGAT Official implementation of Self-supervised Graph Attention Networks (SuperGAT). This model is presented at How to Find Your Friendly Neighbor
Flashes keyboard leds on incoming/outgoing network packets
LED Net Capture Flashes keyboard leds on incoming/outgoing network packets Usage Requires root priviledges to run usage: ledcapture.py [-h] --keyboard
[CVPR 2021] Involution: Inverting the Inherence of Convolution for Visual Recognition, a brand new neural operator
involution Official implementation of a neural operator as described in Involution: Inverting the Inherence of Convolution for Visual Recognition (CVP
[CVPR 2021] Anycost GANs for Interactive Image Synthesis and Editing
Anycost GAN video | paper | website Anycost GANs for Interactive Image Synthesis and Editing Ji Lin, Richard Zhang, Frieder Ganz, Song Han, Jun-Yan Zh
EDCNN: Edge enhancement-based Densely Connected Network with Compound Loss for Low-Dose CT Denoising
EDCNN: Edge enhancement-based Densely Connected Network with Compound Loss for Low-Dose CT Denoising By Tengfei Liang, Yi Jin, Yidong Li, Tao Wang. Th
Node for thenewboston digital currency network.
Project setup For project setup see INSTALL.rst Community Join the community to stay updated on the most recent developments, project roadmaps, and ra
A complete end-to-end demonstration in which we collect training data in Unity and use that data to train a deep neural network to predict the pose of a cube. This model is then deployed in a simulated robotic pick-and-place task.
Object Pose Estimation Demo This tutorial will go through the steps necessary to perform pose estimation with a UR3 robotic arm in Unity. You’ll gain
Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder
ASEGAN: Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder 中文版简介 Readme with English Version 介绍 基于SEGAN模型的改进版本,使用自主设计的非
Simulating Sycamore quantum circuits classically using tensor network algorithm.
Simulating the Sycamore quantum supremacy circuit This repo contains data we have obtained in simulating the Sycamore quantum supremacy circuits with
Your interactive network visualizing dashboard
Your interactive network visualizing dashboard Documentation: Here What is Jaal Jaal is a python based interactive network visualizing tool built usin
Open standard for machine learning interoperability
Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides
PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)
English | 简体中文 Welcome to the PaddlePaddle GitHub. PaddlePaddle, as the only independent R&D deep learning platform in China, has been officially open
Image augmentation library in Python for machine learning.
Augmentor is an image augmentation library in Python for machine learning. It aims to be a standalone library that is platform and framework independe
A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation
Aboleth A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation [1] with stochastic gradient variational Bayes
Bayesian dessert for Lasagne
Gelato Bayesian dessert for Lasagne Recent results in Bayesian statistics for constructing robust neural networks have proved that it is one of the be
InferPy: Deep Probabilistic Modeling with Tensorflow Made Easy
InferPy: Deep Probabilistic Modeling Made Easy InferPy is a high-level API for probabilistic modeling written in Python and capable of running on top
Deep Reinforcement Learning for Keras.
Deep Reinforcement Learning for Keras What is it? keras-rl implements some state-of-the art deep reinforcement learning algorithms in Python and seaml
Visualizer for neural network, deep learning, and machine learning models
Netron is a viewer for neural network, deep learning and machine learning models. Netron supports ONNX (.onnx, .pb, .pbtxt), Keras (.h5, .keras), Tens
A collection of infrastructure and tools for research in neural network interpretability.
Lucid Lucid is a collection of infrastructure and tools for research in neural network interpretability. We're not currently supporting tensorflow 2!
🎆 A visualization of the CapsNet layers to better understand how it works
CapsNet-Visualization For more information on capsule networks check out my Medium articles here and here. Setup Use pip to install the required pytho
Python Library for Model Interpretation/Explanations
Skater Skater is a unified framework to enable Model Interpretation for all forms of model to help one build an Interpretable machine learning system
Transfer Learning library for Deep Neural Networks.
Transfer and meta-learning in Python Each folder in this repository corresponds to a method or tool for transfer/meta-learning. xfer-ml is a standalon
Gluon CV Toolkit
Gluon CV Toolkit | Installation | Documentation | Tutorials | GluonCV provides implementations of the state-of-the-art (SOTA) deep learning models in
A clear, concise, simple yet powerful and efficient API for deep learning.
The Gluon API Specification The Gluon API specification is an effort to improve speed, flexibility, and accessibility of deep learning technology for
QKeras: a quantization deep learning library for Tensorflow Keras
QKeras github.com/google/qkeras QKeras 0.8 highlights: Automatic quantization using QKeras; Stochastic behavior (including stochastic rouding) is disa
Graph Neural Networks with Keras and Tensorflow 2.
Welcome to Spektral Spektral is a Python library for graph deep learning, based on the Keras API and TensorFlow 2. The main goal of this project is to
Distributed Deep learning with Keras & Spark
Elephas: Distributed Deep Learning with Keras & Spark Elephas is an extension of Keras, which allows you to run distributed deep learning models at sc
Keras community contributions
keras-contrib : Keras community contributions Keras-contrib is deprecated. Use TensorFlow Addons. The future of Keras-contrib: We're migrating to tens
Ludwig is a toolbox that allows to train and evaluate deep learning models without the need to write code.
Translated in 🇰🇷 Korean/ Ludwig is a toolbox that allows users to train and test deep learning models without the need to write code. It is built on
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility
Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥
TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens
Geometric Deep Learning Extension Library for PyTorch
Documentation | Paper | Colab Notebooks | External Resources | OGB Examples PyTorch Geometric (PyG) is a geometric deep learning extension library for
Simple tools for logging and visualizing, loading and training
TNT TNT is a library providing powerful dataloading, logging and visualization utilities for Python. It is closely integrated with PyTorch and is desi
A scikit-learn compatible neural network library that wraps PyTorch
A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look
A simplified framework and utilities for PyTorch
Here is Poutyne. Poutyne is a simplified framework for PyTorch and handles much of the boilerplating code needed to train neural networks. Use Poutyne
High performance implementation of Extreme Learning Machines (fast randomized neural networks).
High Performance toolbox for Extreme Learning Machines. Extreme learning machines (ELM) are a particular kind of Artificial Neural Networks, which sol
Little Ball of Fur - A graph sampling extension library for NetworKit and NetworkX (CIKM 2020)
Little Ball of Fur is a graph sampling extension library for Python. Please look at the Documentation, relevant Paper, Promo video and External Resour
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)
Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext
50% faster, 50% less RAM Machine Learning. Numba rewritten Sklearn. SVD, NNMF, PCA, LinearReg, RidgeReg, Randomized, Truncated SVD/PCA, CSR Matrices all 50+% faster
[Due to the time taken @ uni, work + hell breaking loose in my life, since things have calmed down a bit, will continue commiting!!!] [By the way, I'm
EGNN - Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch
EGNN - Pytorch Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch. May be eventually used for Alphafold2 replication. This
PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021
Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 20
An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding, top-down-bottom-up, and attention (consensus between columns)
GLOM - Pytorch (wip) An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding,
LightSpeech: Lightweight and Fast Text to Speech with Neural Architecture Search
LightSpeech UnOfficial PyTorch implementation of LightSpeech: Lightweight and Fast Text to Speech with Neural Architecture Search.
Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly
Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly Code for this paper Ultra-Data-Efficient GAN Tra
Implementation of E(n)-Transformer, which extends the ideas of Welling's E(n)-Equivariant Graph Neural Network to attention
E(n)-Equivariant Transformer (wip) Implementation of E(n)-Equivariant Transformer, which extends the ideas from Welling's E(n)-Equivariant G
Securely and anonymously share files, host websites, and chat with friends using the Tor network
OnionShare OnionShare is an open source tool that lets you securely and anonymously share files, host websites, and chat with friends using the Tor ne
Social Distancing Detector using deep learning and capable to run on edge AI devices such as NVIDIA Jetson, Google Coral, and more.
Smart Social Distancing Smart Social Distancing Introduction Getting Started Prerequisites Usage Processor Optional Parameters Configuring AWS credent
ReST based network device broker
The Open API Platform for Network Devices netpalm makes it easy to push and pull state from your apps to your network by providing multiple southbound
Official implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis https://arxiv.org/abs/2011.13775
CIPS -- Official Pytorch Implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis Requirements pip install -r requi
Implements Gradient Centralization and allows it to use as a Python package in TensorFlow
Gradient Centralization TensorFlow This Python package implements Gradient Centralization in TensorFlow, a simple and effective optimization technique
🍯 16 honeypots in a single pypi package (DNS, HTTP Proxy, HTTP, HTTPS, SSH, POP3, IMAP, STMP, VNC, SMB, SOCKS5, Redis, TELNET, Postgres & MySQL)
Easy to setup customizable honeypots for monitoring network traffic, bots activities and username\password credentials. The current available honeypot
Nautobot is a Network Source of Truth and Network Automation Platform.
Nautobot is a Network Source of Truth and Network Automation Platform. Nautobot was initially developed as a fork of NetBox (v2.10.4). Nautobot runs as a web application atop the Django Python framework with a PostgreSQL database.
Sandwich Batch Normalization
Sandwich Batch Normalization Code for Sandwich Batch Normalization. Introduction We present Sandwich Batch Normalization (SaBN), an extremely easy imp
Generate a roam research like Network Graph view from your Notion pages.
Notion Graph View Export Notion pages to a Roam Research like graph view.
A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing"
A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing" (WebConf 2021). Abstract In this work we propose Pathfind
SSD: Single Shot MultiBox Detector pytorch implementation focusing on simplicity
SSD: Single Shot MultiBox Detector Introduction Here is my pytorch implementation of 2 models: SSD-Resnet50 and SSDLite-MobilenetV2.
BitPack is a practical tool to efficiently save ultra-low precision/mixed-precision quantized models.
BitPack is a practical tool that can efficiently save quantized neural network models with mixed bitwidth.
The first machine learning framework that encourages learning ML concepts instead of memorizing class functions.
SeaLion is designed to teach today's aspiring ml-engineers the popular machine learning concepts of today in a way that gives both intuition and ways of application. We do this through concise algorithms that do the job in the least jargon possible and examples to guide you through every step of the way.