311 Repositories
Python bayesian-methods Libraries
Forecasting for knowable future events using Bayesian informative priors (forecasting with judgmental-adjustment).
What is judgyprophet? judgyprophet is a Bayesian forecasting algorithm based on Prophet, that enables forecasting while using information known by the
Second Order Optimization and Curvature Estimation with K-FAC in JAX.
KFAC-JAX - Second Order Optimization with Approximate Curvature in JAX Installation | Quickstart | Documentation | Examples | Citing KFAC-JAX KFAC-JAX
Object-oriented programming (OOP) is a method of structuring a program by bundling related properties and behaviors into individual objects. In this tutorial, you’ll learn the basics of object-oriented programming in Python.
06_Python_Object_Class Introduction 👋 Objected oriented programming as a discipline has gained a universal following among developers. Python, an in-
Data types specify the different sizes and values that can be stored in the variable. For example, Python stores numbers, strings, and a list of values using different data types. Learn different types of Python data types along with their respective in-built functions and methods.
02_Python_Datatypes Introduction 👋 Data types specify the different sizes and values that can be stored in the variable. For example, Python stores n
Data stream analytics: Implement online learning methods to address concept drift in data streams using the River library. Code for the paper entitled "PWPAE: An Ensemble Framework for Concept Drift Adaptation in IoT Data Streams" accepted in IEEE GlobeCom 2021.
PWPAE-Concept-Drift-Detection-and-Adaptation This is the code for the paper entitled "PWPAE: An Ensemble Framework for Concept Drift Adaptation in IoT
Python code to control laboratory hardware and perform Bayesian reaction optimization on the MIT Make-It system for chemical synthesis
Description This repository contains code accompanying the following paper on the Make-It robotic flow chemistry platform developed by the Jensen Rese
On Uncertainty, Tempering, and Data Augmentation in Bayesian Classification
Understanding Bayesian Classification This repository hosts the code to reproduce the results presented in the paper On Uncertainty, Tempering, and Da
Evaluation and Benchmarking of Speech Super-resolution Methods
Speech Super-resolution Evaluation and Benchmarking What this repo do: A toolbox for the evaluation of speech super-resolution algorithms. Unify the e
Picasso: a methods for embedding points in 2D in a way that respects distances while fitting a user-specified shape.
Picasso Code to generate Picasso embeddings of any input matrix. Picasso maps the points of an input matrix to user-defined, n-dimensional shape coord
A variational Bayesian method for similarity learning in non-rigid image registration (CVPR 2022)
A variational Bayesian method for similarity learning in non-rigid image registration We provide the source code and the trained models used in the re
Repository for "Improving evidential deep learning via multi-task learning," published in AAAI2022
Improving evidential deep learning via multi task learning It is a repository of AAAI2022 paper, “Improving evidential deep learning via multi-task le
Best DDoS Attack Script Python3, Cyber Attack With 40 Methods
MXDDoS - DDoS Attack Script With 40 Methods (Code Lang - Python 3) Please Don't Attack '.gov' and '.ir' Websites :) Features And Methods 💣 Layer7 GET
Lightweight mmm - Lightweight (Bayesian) Media Mix Model
Lightweight (Bayesian) Media Mix Model This is not an official Google product. L
Hierarchical-Bayesian-Defense - Towards Adversarial Robustness of Bayesian Neural Network through Hierarchical Variational Inference (Openreview)
Towards Adversarial Robustness of Bayesian Neural Network through Hierarchical V
PyTorch implementation for the paper Pseudo Numerical Methods for Diffusion Models on Manifolds
Pseudo Numerical Methods for Diffusion Models on Manifolds (PNDM) This repo is the official PyTorch implementation for the paper Pseudo Numerical Meth
B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search
B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search This is the offical implementation of the
Different steganography methods with examples and my own small image database
literally-the-most-useless-project [Different steganography methods with examples and my own small image database] This project currently contains thr
Crowd-Kit is a powerful Python library that implements commonly-used aggregation methods for crowdsourced annotation and offers the relevant metrics and datasets
Crowd-Kit: Computational Quality Control for Crowdsourcing Documentation Crowd-Kit is a powerful Python library that implements commonly-used aggregat
PacketPy is an open-source solution for stress testing network devices using different testing methods
PacketPy About PacketPy is an open-source solution for stress testing network devices using different testing methods. Currently, there are only two c
A python scripts that uses 3 different feature extraction methods such as SIFT, SURF and ORB to find a book in a video clip and project trailer of a movie based on that book, on to it.
A python scripts that uses 3 different feature extraction methods such as SIFT, SURF and ORB to find a book in a video clip and project trailer of a movie based on that book, on to it.
Python package for concise, transparent, and accurate predictive modeling
Python package for concise, transparent, and accurate predictive modeling. All sklearn-compatible and easy to use. 📚 docs • 📖 demo notebooks Modern
Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces"
Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces" This repo contains the implementation of GEBO algorithm.
Posterior temperature optimized Bayesian models for inverse problems in medical imaging
Posterior temperature optimized Bayesian models for inverse problems in medical imaging Max-Heinrich Laves*, Malte Tölle*, Alexander Schlaefer, Sandy
Official Implementation of "Transformers Can Do Bayesian Inference"
Official Code for the Paper "Transformers Can Do Bayesian Inference" We train Transformers to do Bayesian Prediction on novel datasets for a large var
A Bayesian cognition approach for belief updating of correlation judgement through uncertainty visualizations
Overview Code and supplemental materials for Karduni et al., 2020 IEEE Vis. "A Bayesian cognition approach for belief updating of correlation judgemen
Our product DrLeaf which not only makes the work easier but also reduces the effort and expenditure of the farmer to identify the disease and its treatment methods.
Our product DrLeaf which not only makes the work easier but also reduces the effort and expenditure of the farmer to identify the disease and its treatment methods. We have to upload the image of an affected plant’s leaf through our website and our plant disease prediction model predicts and returns the disease name. And along with the disease name, we also provide the best suitable methods to cure the disease.
Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set
Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set This is the repository for the Deep Learning proje
Python implementation of Weng-Lin Bayesian ranking, a better, license-free alternative to TrueSkill
Python implementation of Weng-Lin Bayesian ranking, a better, license-free alternative to TrueSkill This is a port of the amazing openskill.js package
Using NumPy to solve the equations of fluid mechanics together with Finite Differences, explicit time stepping and Chorin's Projection methods
Computational Fluid Dynamics in Python Using NumPy to solve the equations of fluid mechanics 🌊 🌊 🌊 together with Finite Differences, explicit time
TensorFlow implementation for Bayesian Modeling and Uncertainty Quantification for Learning to Optimize: What, Why, and How
Bayesian Modeling and Uncertainty Quantification for Learning to Optimize: What, Why, and How TensorFlow implementation for Bayesian Modeling and Unce
Unity Propagation in Bayesian Networks Handling Inconsistency via Unity Smoothing
This repository contains the scripts needed to generate the results from the paper Unity Propagation in Bayesian Networks Handling Inconsistency via U
Collections for the lasted paper about multi-view clustering methods (papers, codes)
Multi-View Clustering Papers Collections for the lasted paper about multi-view clustering methods (papers, codes). There also exists some repositories
Natural Posterior Network: Deep Bayesian Predictive Uncertainty for Exponential Family Distributions
Natural Posterior Network This repository provides the official implementation o
ParaMonte is a serial/parallel library of Monte Carlo routines for sampling mathematical objective functions of arbitrary-dimensions
ParaMonte is a serial/parallel library of Monte Carlo routines for sampling mathematical objective functions of arbitrary-dimensions, in particular, the posterior distributions of Bayesian models in data science, Machine Learning, and scientific inference, with the design goal of unifying the automation (of Monte Carlo simulations), user-friendliness (of the library), accessibility (from multiple programming environments), high-performance (at runtime), and scalability (across many parallel processors).
Bayesian Inference Tools in Python
BayesPy Bayesian Inference Tools in Python Our goal is, given the discrete outcomes of events, estimate the distribution of categories. Using gradient
Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution
Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution Figure: Example visualization of the method and baseline as a
Efficient Online Bayesian Inference for Neural Bandits
Efficient Online Bayesian Inference for Neural Bandits By Gerardo Durán-Martín, Aleyna Kara, and Kevin Murphy AISTATS 2022.
A mini-course offered to Undergrad chemistry students
The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th
Bayesian A/B testing
bayesian_testing is a small package for a quick evaluation of A/B (or A/B/C/...) tests using Bayesian approach.
Laplace Redux -- Effortless Bayesian Deep Learning
Laplace Redux - Effortless Bayesian Deep Learning This repository contains the code to run the experiments for the paper Laplace Redux - Effortless Ba
Self-Supervised Methods for Noise-Removal
SSMNR | Self-Supervised Methods for Noise Removal Image denoising is the task of removing noise from an image, which can be formulated as the task of
PEPit is a package enabling computer-assisted worst-case analyses of first-order optimization methods.
PEPit: Performance Estimation in Python This open source Python library provides a generic way to use PEP framework in Python. Performance estimation
Fully Adaptive Bayesian Algorithm for Data Analysis (FABADA) is a new approach of noise reduction methods. In this repository is shown the package developed for this new method based on \citepaper.
Fully Adaptive Bayesian Algorithm for Data Analysis FABADA FABADA is a novel non-parametric noise reduction technique which arise from the point of vi
Course on computational design, non-linear optimization, and dynamics of soft systems at UIUC.
Computational Design and Dynamics of Soft Systems · This is a repository that contains the source code for generating the lecture notes, handouts, exe
Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.
Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.
Fake News Detection Using Machine Learning Methods
Fake-News-Detection-Using-Machine-Learning-Methods Fake news is always a real and dangerous issue. However, with the presence and abundance of various
Code for "Unsupervised Source Separation via Bayesian inference in the latent domain"
LQVAE-separation Code for "Unsupervised Source Separation via Bayesian inference in the latent domain" Paper Samples GT Compressed Separated Drums GT
This repository collects 100 papers related to negative sampling methods.
Negative-Sampling-Paper This repository collects 100 papers related to negative sampling methods, covering multiple research fields such as Recommenda
Bayesian Modeling and Computation in Python
Bayesian Modeling and Computation in Python Open access and Code This repository contains the open access version of the text and the code examples in
A python tutorial on bayesian modeling techniques (PyMC3)
Bayesian Modelling in Python Welcome to "Bayesian Modelling in Python" - a tutorial for those interested in learning how to apply bayesian modelling t
Chess reinforcement learning by AlphaGo Zero methods.
About Chess reinforcement learning by AlphaGo Zero methods. This project is based on these main resources: DeepMind's Oct 19th publication: Mastering
YT-Spammer-Purge - Allows you easily scan for and delete scam comments using several methods
YouTube Spammer Purge What Is This? - Allows you to filter and search for spamme
Methods to get the probability of a changepoint in a time series.
Bayesian Changepoint Detection Methods to get the probability of a changepoint in a time series. Both online and offline methods are available. Read t
An example of time series augmentation methods with Keras
Time Series Augmentation This is a collection of time series data augmentation methods and an example use using Keras. News 2020/04/16: Repository Cre
A general and strong 3D object detection codebase that supports more methods, datasets and tools (debugging, recording and analysis).
ALLINONE-Det ALLINONE-Det is a general and strong 3D object detection codebase built on OpenPCDet, which supports more methods, datasets and tools (de
A new codebase for Group Activity Recognition. It contains codes for ICCV 2021 paper: Spatio-Temporal Dynamic Inference Network for Group Activity Recognition and some other methods.
Spatio-Temporal Dynamic Inference Network for Group Activity Recognition The source codes for ICCV2021 Paper: Spatio-Temporal Dynamic Inference Networ
Text and code for the forthcoming second edition of Think Bayes, by Allen Downey.
Think Bayes 2 by Allen B. Downey The HTML version of this book is here. Think Bayes is an introduction to Bayesian statistics using computational meth
Pytorch implementations of Bayes By Backprop, MC Dropout, SGLD, the Local Reparametrization Trick, KF-Laplace, SG-HMC and more
Bayesian Neural Networks Pytorch implementations for the following approximate inference methods: Bayes by Backprop Bayes by Backprop + Local Reparame
Modeling cumulative cases of Covid-19 in the US during the Covid 19 Delta wave using Bayesian methods.
Introduction The goal of this analysis is to find a model that fits the observed cumulative cases of COVID-19 in the US, starting in Mid-July 2021 and
Inject your config variables into methods, so they are as close to usage as possible
Inject your config variables into methods, so they are as close to usage as possible
SimpleDepthEstimation - An unified codebase for NN-based monocular depth estimation methods
SimpleDepthEstimation Introduction This is an unified codebase for NN-based monocular depth estimation methods, the framework is based on detectron2 (
Distributed Grid Descent: an algorithm for hyperparameter tuning guided by Bayesian inference, designed to run on multiple processes and potentially many machines with no central point of control
Distributed Grid Descent: an algorithm for hyperparameter tuning guided by Bayesian inference, designed to run on multiple processes and potentially many machines with no central point of control.
Awesome Graph Classification - A collection of important graph embedding, classification and representation learning papers with implementations.
A collection of graph classification methods, covering embedding, deep learning, graph kernel and factorization papers
Doing bayesian data analysis - Python/PyMC3 versions of the programs described in Doing bayesian data analysis by John K. Kruschke
Doing_bayesian_data_analysis This repository contains the Python version of the R programs described in the great book Doing bayesian data analysis (f
Prml - Repository of notes, code and notebooks in Python for the book Pattern Recognition and Machine Learning by Christopher Bishop
Pattern Recognition and Machine Learning (PRML) This project contains Jupyter notebooks of many the algorithms presented in Christopher Bishop's Patte
Implementation of hyperparameter optimization/tuning methods for machine learning & deep learning models
Hyperparameter Optimization of Machine Learning Algorithms This code provides a hyper-parameter optimization implementation for machine learning algor
Saliency - Framework-agnostic implementation for state-of-the-art saliency methods (XRAI, BlurIG, SmoothGrad, and more).
Saliency Methods 🔴 Now framework-agnostic! (Example core notebook) 🔴 🔗 For further explanation of the methods and more examples of the resulting ma
Statistical-Rethinking-with-Python-and-PyMC3 - Python/PyMC3 port of the examples in " Statistical Rethinking A Bayesian Course with Examples in R and Stan" by Richard McElreath
Statistical Rethinking with Python and PyMC3 This repository has been deprecated in favour of this one, please check that repository for updates, for
NumQMBasic - A mini-course offered to Undergrad physics students
The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th
Statistical Rethinking: A Bayesian Course Using CmdStanPy and Plotnine
Statistical Rethinking: A Bayesian Course Using CmdStanPy and Plotnine Intro This repo contains the python/stan version of the Statistical Rethinking
JudeasRx - graphical app for doing personalized causal medicine using the methods invented by Judea Pearl et al.
JudeasRX Instructions Read the references given in the Theory and Notation section below Fire up the Jupyter Notebook judeas-rx.ipynb The notebook dra
Numerical Methods with Python, Numpy and Matplotlib
Numerical Bric-a-Brac Collections of numerical techniques with Python and standard computational packages (Numpy, SciPy, Numba, Matplotlib ...). Diffe
Finite difference solution of 2D Poisson equation. Can handle Dirichlet, Neumann and mixed boundary conditions.
Poisson-solver-2D Finite difference solution of 2D Poisson equation Current version can handle Dirichlet, Neumann, and mixed (combination of Dirichlet
3D-Lorenz-Attractor-simulation-with-python
3D-Lorenz-Attractor-simulation-with-python Animação 3D da trajetória do Atrator de Lorenz, implementada em Python usando o método de Runge-Kutta de 4ª
Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods."
pv_predict_unet-lstm Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods." IEEE Transactions
Using Bayesian, KNN, Logistic Regression to classify spam and non-spam.
Make Sure the dataset file "spamData.mat" is in the folder spam\src Environment: Python --version = 3.7 Third Party: numpy, matplotlib, math, scipy
Flask-Diamond is a batteries-included Flask framework.
Flask-Diamond Flask-Diamond is a batteries-included Python Flask framework, sortof like Django but radically decomposable. Flask-Diamond offers some o
Denial Attacks by Various Methods
Denial Service Attack Denial Attacks by Various Methods IIIIIIIIIIIIIIIIIIII PPPPPPPPPPPPPPPPP VVVVVVVV VVVVVVVV I::
Code for the paper: Adversarial Machine Learning: Bayesian Perspectives
Code for the paper: Adversarial Machine Learning: Bayesian Perspectives This repository contains code for reproducing the experiments in the ** Advers
TeachMyAgent is a testbed platform for Automatic Curriculum Learning methods in Deep RL.
TeachMyAgent: a Benchmark for Automatic Curriculum Learning in Deep RL Paper Website Documentation TeachMyAgent is a testbed platform for Automatic Cu
MCMC samplers for Bayesian estimation in Python, including Metropolis-Hastings, NUTS, and Slice
Sampyl May 29, 2018: version 0.3 Sampyl is a package for sampling from probability distributions using MCMC methods. Similar to PyMC3 using theano to
Pytorch Lightning Implementation of SC-Depth Methods.
SC_Depth_pl: This is a pytorch lightning implementation of SC-Depth (V1, V2) for self-supervised learning of monocular depth from video. In the V1 (IJ
Machine learning algorithms for many-body quantum systems
NetKet NetKet is an open-source project delivering cutting-edge methods for the study of many-body quantum systems with artificial neural networks and
Find exposed API keys based on RegEx and get exploitation methods for some of keys that are found
dora Features Blazing fast as we are using ripgrep in backend Exploit/PoC steps for many of the API key, allowing to write a good report for bug bount
A set of demo of deploying a Machine Learning Model in production using various methods
Machine Learning Model in Production This git is for those who have concern about serving your machine learning model to production. Overview The tuto
Fast methods to work with hydro- and topography data in pure Python.
PyFlwDir Intro PyFlwDir contains a series of methods to work with gridded DEM and flow direction datasets, which are key to many workflows in many ear
Package to provide translation methods for pyramid, and means to reload translations without stopping the application
Package to provide translation methods for pyramid, and means to reload translations without stopping the application
Computational Methods Course at UdeA. Forked and size reduced from:
Computational Methods for Physics & Astronomy Book version at: https://restrepo.github.io/ComputationalMethods by: Sebastian Bustamante 2014/2015 Dieg
Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo"
dblmahmc Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo" Requirements: https://github.com
PyDEns is a framework for solving Ordinary and Partial Differential Equations (ODEs & PDEs) using neural networks
PyDEns PyDEns is a framework for solving Ordinary and Partial Differential Equations (ODEs & PDEs) using neural networks. With PyDEns one can solve PD
Recursive Bayesian Networks
Recursive Bayesian Networks This repository contains the code to reproduce the results from the NeurIPS 2021 paper Lieck R, Rohrmeier M (2021) Recursi
Library to enable Bayesian active learning in your research or labeling work.
Bayesian Active Learning (BaaL) BaaL is an active learning library developed at ElementAI. This repository contains techniques and reusable components
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"
LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and
A library for researching neural networks compression and acceleration methods.
A library for researching neural networks compression and acceleration methods.
Final term project for Bayesian Machine Learning Lecture (XAI-623)
Mixquality_AL Final Term Project For Bayesian Machine Learning Lecture (XAI-623) Youtube Link The presentation is given in YoutubeLink Problem Formula
An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects different compression algorithms have.
ImageCompressionSimulation An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects o
Code accompanying "Adaptive Methods for Aggregated Domain Generalization"
Adaptive Methods for Aggregated Domain Generalization (AdaClust) Official Pytorch Implementation of Adaptive Methods for Aggregated Domain Generalizat
Code for the paper “The Peril of Popular Deep Learning Uncertainty Estimation Methods”
Uncertainty Estimation Methods Code for the paper “The Peril of Popular Deep Learning Uncertainty Estimation Methods” Reference If you use this code,
Evaluating saliency methods on artificial data with different background types
Evaluating saliency methods on artificial data with different background types This repository contains the relevant code for the MedNeurips 2021 subm
An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.
An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.