7177 Repositories
Python beginners-pytorch-deep-learning Libraries
This is an official PyTorch implementation of Task-Adaptive Neural Network Search with Meta-Contrastive Learning (NeurIPS 2021, Spotlight).
NeurIPS 2021 (Spotlight): Task-Adaptive Neural Network Search with Meta-Contrastive Learning This is an official PyTorch implementation of Task-Adapti
This repository contains the implementation of the paper: "Towards Frequency-Based Explanation for Robust CNN"
RobustFreqCNN About This repository contains the implementation of the paper "Towards Frequency-Based Explanation for Robust CNN" arxiv. It primarly d
An implementation for the loss function proposed in Decoupled Contrastive Loss paper.
Decoupled-Contrastive-Learning This repository is an implementation for the loss function proposed in Decoupled Contrastive Loss paper. Requirements P
In this project I played with mlflow, streamlit and fastapi to create a training and prediction app on digits
Fastapi + MLflow + streamlit Setup env. I hope I covered all. pip install -r requirements.txt Start app Go in the root dir and run these Streamlit str
Create and implement a deep learning library from scratch.
In this project, we create and implement a deep learning library from scratch. Table of Contents Deep Leaning Library Table of Contents About The Proj
JAXDL: JAX (Flax) Deep Learning Library
JAXDL: JAX (Flax) Deep Learning Library Simple and clean JAX/Flax deep learning algorithm implementations: Soft-Actor-Critic (arXiv:1812.05905) Transf
(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework
(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework Background: Outlier detection (OD) is a key data mining task for identify
A PyTorch Lightning Callback for pushing models to the Hugging Face Hub ๐คโก๏ธ
hf-hub-lightning A callback for pushing lightning models to the Hugging Face Hub. Note: I made this package for myself, mostly...if folks seem to be i
PyTorch implementation of "A Simple Baseline for Low-Budget Active Learning".
A Simple Baseline for Low-Budget Active Learning This repository is the implementation of A Simple Baseline for Low-Budget Active Learning. In this pa
PyTorch implementation of Memory-based semantic segmentation for off-road unstructured natural environments.
MemSeg: Memory-based semantic segmentation for off-road unstructured natural environments Introduction This repository is a PyTorch implementation of
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021
Directed Graph Contrastive Learning The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this paper, we present the first con
The Empirical Investigation of Representation Learning for Imitation (EIRLI)
The Empirical Investigation of Representation Learning for Imitation (EIRLI)
TrackTech: Real-time tracking of subjects and objects on multiple cameras
TrackTech: Real-time tracking of subjects and objects on multiple cameras This project is part of the 2021 spring bachelor final project of the Bachel
A lightweight python AUTOmatic-arRAY library.
A lightweight python AUTOmatic-arRAY library. Write numeric code that works for: numpy cupy dask autograd jax mars tensorflow pytorch ... and indeed a
PoseCamera is python based SDK for human pose estimation through RGB webcam.
PoseCamera PoseCamera is python based SDK for human pose estimation through RGB webcam. Install install posecamera package through pip pip install pos
Simple PyTorch hierarchical models.
A python package adding basic hierarchal networks in pytorch for classification tasks. It implements a simple hierarchal network structure based on feed-backward outputs.
A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen.
Master Release Pytorch - Py + Nim A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen. Because Nim compiles to C+
Generate custom detailed survey paper with topic clustered sections and proper citations, from just a single query in just under 30 mins !!
Auto-Research A no-code utility to generate a detailed well-cited survey with topic clustered sections (draft paper format) and other interesting arti
Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression
Quantile Regression DQN Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression (https://arx
jel - Japanese Entity Linker - is Bi-encoder based entity linker for japanese.
jel: Japanese Entity Linker jel - Japanese Entity Linker - is Bi-encoder based entity linker for japanese. Usage Currently, link and question methods
PyTorch implementation of SmoothGrad: removing noise by adding noise.
SmoothGrad implementation in PyTorch PyTorch implementation of SmoothGrad: removing noise by adding noise. Vanilla Gradients SmoothGrad Guided backpro
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)
A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G
Anuvada: Interpretable Models for NLP using PyTorch
Anuvada: Interpretable Models for NLP using PyTorch So, you want to know why your classifier arrived at a particular decision or why your flashy new d
Pytorch implementation for Semantic Segmentation/Scene Parsing on MIT ADE20K dataset
Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch implementation of semantic segmentation models on MIT ADE20K scene parsing da
Multi-layer convolutional LSTM with Pytorch
Convolution_LSTM_pytorch Thanks for your attention. I haven't got time to maintain this repo for a long time. I recommend this repo which provides an
Equivariant CNNs for the sphere and SO(3) implemented in PyTorch
Equivariant CNNs for the sphere and SO(3) implemented in PyTorch
PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR) and Generative Adversarial Imitation Learning (GAIL).
PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR) and Generative Adversarial Imitation Learning (GAIL).
Repository for playing the computer vision apps: People analytics on Raspberry Pi.
play-with-torch Repository for playing the computer vision apps: People analytics on Raspberry Pi. Tools Tested Hardware RasberryPi 4 Model B here, RA
A method for cleaning and classifying text using transformers.
NLP Translation and Classification The repository contains a method for classifying and cleaning text using NLP transformers. Overview The input data
A Pytorch Implementation of a continuously rate adjustable learned image compression framework.
GainedVAE A Pytorch Implementation of a continuously rate adjustable learned image compression framework, Gained Variational Autoencoder(GainedVAE). N
Some toy examples of score matching algorithms written in PyTorch
toy_gradlogp This repo implements some toy examples of the following score matching algorithms in PyTorch: ssm-vr: sliced score matching with variance
PyTorch Autoencoders - Implementing a Variational Autoencoder (VAE) Series in Pytorch.
PyTorch Autoencoders Implementing a Variational Autoencoder (VAE) Series in Pytorch. Inspired by this repository Model List check model paper conferen
The PyTorch implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision.
DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision The PyTorch implementation of DiscoBox: Weakly Supe
Simple Machine Learning Tool Kit
Getting started smltk (Simple Machine Learning Tool Kit) package is implemented for helping your work during data preparation testing your model The g
Deep learning image registration library for PyTorch
TorchIR: Pytorch Image Registration TorchIR is a image registration library for deep learning image registration (DLIR). I have integrated several ide
NeurIPS 2021, "Fine Samples for Learning with Noisy Labels"
[Official] FINE Samples for Learning with Noisy Labels This repository is the official implementation of "FINE Samples for Learning with Noisy Labels"
Official Pytorch implementation of "Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021)
Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021) Official Pytorch implementation of Unbiased Classification
Pytorch implementation of RED-SDS (NeurIPS 2021).
Recurrent Explicit Duration Switching Dynamical Systems (RED-SDS) This repository contains a reference implementation of RED-SDS, a non-linear state s
Deep Learning for Computer Vision final project
Deep Learning for Computer Vision final project
unofficial pytorch implementation of RefineGAN
RefineGAN unofficial pytorch implementation of RefineGAN (https://arxiv.org/abs/1709.00753) for CSMRI reconstruction, the official code using tensorpa
DirectML is a high-performance, hardware-accelerated DirectX 12 library for machine learning.
DirectML is a high-performance, hardware-accelerated DirectX 12 library for machine learning. DirectML provides GPU acceleration for common machine learning tasks across a broad range of supported hardware and drivers, including all DirectX 12-capable GPUs from vendors such as AMD, Intel, NVIDIA, and Qualcomm.
Official PyTorch(Geometric) implementation of DPGNN(DPGCN) in "Distance-wise Prototypical Graph Neural Network for Node Imbalance Classification"
DPGNN This repository is an official PyTorch(Geometric) implementation of DPGNN(DPGCN) in "Distance-wise Prototypical Graph Neural Network for Node Im
SEJE Pytorch implementation
SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering. Contents Inst
Anti-Backdoor learning (NeurIPS 2021)
Anti-Backdoor Learning PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data. The Anti-Backdoor Learning
Code repository for the work "Multi-Domain Incremental Learning for Semantic Segmentation", accepted at WACV 2022
Multi-Domain Incremental Learning for Semantic Segmentation This is the Pytorch implementation of our work "Multi-Domain Incremental Learning for Sema
code for generating data set ES-ImageNet with corresponding training code
es-imagenet-master code for generating data set ES-ImageNet with corresponding training code dataset generator some codes of ODG algorithm The variabl
NAS-FCOS: Fast Neural Architecture Search for Object Detection (CVPR 2020)
NAS-FCOS: Fast Neural Architecture Search for Object Detection This project hosts the train and inference code with pretrained model for implementing
EgoNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale
EgonNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale Paper: EgoNN: Egocentric Neural Network for Point Cloud
Building blocks for uncertainty-aware cycle consistency presented at NeurIPS'21.
UncertaintyAwareCycleConsistency This repository provides the building blocks and the API for the work presented in the NeurIPS'21 paper Robustness vi
Official PyTorch implementation of the paper Image-Based CLIP-Guided Essence Transfer.
TargetCLIP- official pytorch implementation of the paper Image-Based CLIP-Guided Essence Transfer This repository finds a global direction in StyleGAN
A Context-aware Visual Attention-based training pipeline for Object Detection from a Webpage screenshot!
CoVA: Context-aware Visual Attention for Webpage Information Extraction Abstract Webpage information extraction (WIE) is an important step to create k
The official repository for "Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds"
Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds The why Im
Implementation of PersonaGPT Dialog Model
PersonaGPT An open-domain conversational agent with many personalities PersonaGPT is an open-domain conversational agent cpable of decoding personaliz
Hierarchical probabilistic 3D U-Net, with attention mechanisms (โ๐๐ต๐ต๐ฆ๐ฏ๐ต๐ช๐ฐ๐ฏ ๐-๐๐ฆ๐ต, ๐๐๐๐ฆ๐ด๐๐ฆ๐ต) and a nested decoder structure with deep supervision (โ๐๐๐ฆ๐ต++).
Hierarchical probabilistic 3D U-Net, with attention mechanisms (โ๐๐ต๐ต๐ฆ๐ฏ๐ต๐ช๐ฐ๐ฏ ๐-๐๐ฆ๐ต, ๐๐๐๐ฆ๐ด๐๐ฆ๐ต) and a nested decoder structure with deep supervision (โ๐๐๐ฆ๐ต++). Built in TensorFlow 2.5. Configured for voxel-level clinically significant prostate cancer detection in multi-channel 3D bpMRI scans.
Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks
Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks This is the master thesi
Instance-Dependent Partial Label Learning
Instance-Dependent Partial Label Learning Installation pip install -r requirements.txt Run the Demo benchmark-random mnist python -u main.py --gpu 0 -
Learning-Augmented Dynamic Power Management
Learning-Augmented Dynamic Power Management This repository contains source code accompanying paper Learning-Augmented Dynamic Power Management with M
Off-policy continuous control in PyTorch, with RDPG, RTD3 & RSAC
arXiv technical report soon available. we are updating the readme to be as comprehensive as possible Please ask any questions in Issues, thanks. Intro
๐ค Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.
English | ็ฎไฝไธญๆ | ็น้ซไธญๆ | ํ๊ตญ์ด State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow ๐ค Transformers provides thousands of pretrai
Code for "AutoMTL: A Programming Framework for Automated Multi-Task Learning"
AutoMTL: A Programming Framework for Automated Multi-Task Learning This is the website for our paper "AutoMTL: A Programming Framework for Automated M
Avalanche RL: an End-to-End Library for Continual Reinforcement Learning
Avalanche RL: an End-to-End Library for Continual Reinforcement Learning Avalanche Website | Getting Started | Examples | Tutorial | API Doc | Paper |
CUP-DNN is a deep neural network model used to predict tissues of origin for cancers of unknown of primary.
CUP-DNN CUP-DNN is a deep neural network model used to predict tissues of origin for cancers of unknown of primary. The model was trained on the expre
Unofficial PyTorch Implementation of Multi-Singer
Multi-Singer Unofficial PyTorch Implementation of Multi-Singer: Fast Multi-Singer Singing Voice Vocoder With A Large-Scale Corpus. Requirements See re
A simple voice detection system which can be applied practically for designing a device with capability to detect a babyโs cry and automatically turning on music
Auto-Baby-Cry-Detection-with-Music-Player A simple voice detection system which can be applied practically for designing a device with capability to d
Use Jax functions in Pytorch with DLPack
Use Jax functions in Pytorch with DLPack
This is the official source code for SLATE. We provide the code for the model, the training code, and a dataset loader for the 3D Shapes dataset. This code is implemented in Pytorch.
SLATE This is the official source code for SLATE. We provide the code for the model, the training code and a dataset loader for the 3D Shapes dataset.
One-Stop Destination for codes of all Data Structures & Algorithms
CodingSimplified_GK This repository is aimed at creating a One stop Destination of codes of all Data structures and Algorithms along with basic explai
Implementation of ConvMixer-Patches Are All You Need? in TensorFlow and Keras
Patches Are All You Need? - ConvMixer ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer in t
This repository is the code of the paper "Sparse Spatial Transformers for Few-Shot Learning".
๐ Sparse Spatial Transformers for Few-Shot Learning This code implements the Sparse Spatial Transformers for Few-Shot Learning(SSFormers). Our code i
A PyTorch-based library for fast prototyping and sharing of deep neural network models.
A PyTorch-based library for fast prototyping and sharing of deep neural network models.
Hacking and Learning consistently for 100 days straight af.
#100DaysOfHacking Hacking and Learning consistently for 100 days straight af. [yes, no breaks except mental-break ones, Obviously.] This Repo is one s
Official PyTorch implementation of the paper Image-Based CLIP-Guided Essence Transfer.
TargetCLIP- official pytorch implementation of the paper Image-Based CLIP-Guided Essence Transfer This repository finds a global direction in StyleGAN
Pytorch implementation of Implicit Behavior Cloning.
Implicit Behavior Cloning - PyTorch (wip) Pytorch implementation of Implicit Behavior Cloning. Install conda create -n ibc python=3.8 pip install -r r
Polynomial-time Meta-Interpretive Learning
Louise - polynomial-time Program Learning Getting help with Louise Louise's author can be reached by email at [email protected]. Please use this email t
PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Condition Layer Normalization and Semi-Supervised Training in Text-To-Speech
Cross-Speaker-Emotion-Transfer - PyTorch Implementation PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Conditio
pytorch implementation of the ICCV'21 paper "MVTN: Multi-View Transformation Network for 3D Shape Recognition"
MVTN: Multi-View Transformation Network for 3D Shape Recognition (ICCV 2021) By Abdullah Hamdi, Silvio Giancola, Bernard Ghanem Paper | Video | Tutori
ICLR 2021 i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning
Introduction PyTorch code for the ICLR 2021 paper [i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning]. @inproceedings{lee2021i
PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.
Anti-Backdoor Learning PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data. Check the unlearning effect
๐ต A repository for manually annotating files to create labeled acoustic datasets for machine learning.
๐ต A repository for manually annotating files to create labeled acoustic datasets for machine learning.
Implementation of RegretNet with Pytorch
Dependencies are Python 3, a recent PyTorch, numpy/scipy, tqdm, future and tensorboard. Plotting with Matplotlib. Implementation of the neural network
This repository has the lessons of the gamming programming course
learning-python-game-programming This repository has the lessons of the gamming programming course Na faculdade, estou fazendo a disciplina de program
Official implementation of the paper WAV2CLIP: LEARNING ROBUST AUDIO REPRESENTATIONS FROM CLIP
Wav2CLIP ๐ง WIP ๐ง Official implementation of the paper WAV2CLIP: LEARNING ROBUST AUDIO REPRESENTATIONS FROM CLIP ๐ ๐ Ho-Hsiang Wu, Prem Seetharaman
PyTorch implementation of MSBG hearing loss model and MBSTOI intelligibility metric
PyTorch implementation of MSBG hearing loss model and MBSTOI intelligibility metric This repository contains the implementation of MSBG hearing loss m
A little Python application to auto tag your photos with the power of machine learning.
Tag Machine A little Python application to auto tag your photos with the power of machine learning. Report a bug or request a feature Table of Content
Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch
Enformer - Pytorch (wip) Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch. The original tensorflow
Trains an OpenNMT PyTorch model and SentencePiece tokenizer.
Trains an OpenNMT PyTorch model and SentencePiece tokenizer. Designed for use with Argos Translate and LibreTranslate.
Deep Networks with Recurrent Layer Aggregation
RLA-Net: Recurrent Layer Aggregation Recurrence along Depth: Deep Networks with Recurrent Layer Aggregation This is an implementation of RLA-Net (acce
Official PyTorch implementation of "Improving Face Recognition with Large AgeGaps by Learning to Distinguish Children" (BMVC 2021)
Inter-Prototype (BMVC 2021): Official Project Webpage This repository provides the official PyTorch implementation of the following paper: Improving F
SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering.
SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering. Contents Inst
Official implementation of "Learning Proposals for Practical Energy-Based Regression", 2021.
ebms_proposals Official implementation (PyTorch) of the paper: Learning Proposals for Practical Energy-Based Regression, 2021 [arXiv] [project]. Fredr
Segmentation models with pretrained backbones. PyTorch.
Python library with Neural Networks for Image Segmentation based on PyTorch. The main features of this library are: High level API (just two lines to
PyTorch framework for Deep Learning research and development.
Accelerated DL & RL PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentati
95.47% on CIFAR10 with PyTorch
Train CIFAR10 with PyTorch I'm playing with PyTorch on the CIFAR10 dataset. Prerequisites Python 3.6+ PyTorch 1.0+ Training # Start training with: py
Classifying cat and dog images using Kaggle dataset
PyTorch Image Classification Classifies an image as containing either a dog or a cat (using Kaggle's public dataset), but could easily be extended to
PyTorch implementation of Convolutional Neural Fabrics http://arxiv.org/abs/1606.02492
PyTorch implementation of Convolutional Neural Fabrics arxiv:1606.02492 There are some minor differences: The raw image is first convolved, to obtain
Very Deep Convolutional Networks for Large-Scale Image Recognition
pytorch-vgg Some scripts to convert the VGG-16 and VGG-19 models [1] from Caffe to PyTorch. The converted models can be used with the PyTorch model zo
an implementation of Video Frame Interpolation via Adaptive Separable Convolution using PyTorch
This work has now been superseded by: https://github.com/sniklaus/revisiting-sepconv sepconv-slomo This is a reference implementation of Video Frame I
Convolutional Recurrent Neural Network (CRNN) for image-based sequence recognition.
Convolutional Recurrent Neural Network This software implements the Convolutional Recurrent Neural Network (CRNN), a combination of CNN, RNN and CTC l
Training Very Deep Neural Networks Without Skip-Connections
DiracNets v2 update (January 2018): The code was updated for DiracNets-v2 in which we removed NCReLU by adding per-channel a and b multipliers without
PyTorch and Tensorflow functional model definitions
functional-zoo Model definitions and pretrained weights for PyTorch and Tensorflow PyTorch, unlike lua torch, has autograd in it's core, so using modu