1796 Repositories
Python classification-models Libraries
OptiPLANT is a cloud-based based system that empowers professional and non-professional data scientists to build high-quality predictive models
OptiPLANT OptiPLANT is a cloud-based based system that empowers professional and non-professional data scientists to build high-quality predictive mod
Voice Gender Recognition
In this project it was used some different Machine Learning models to identify the gender of a voice (Female or Male) based on some specific speech and voice attributes.
Towards Fine-Grained Reasoning for Fake News Detection
FinerFact This is the PyTorch implementation for the FinerFact model in the AAAI 2022 paper Towards Fine-Grained Reasoning for Fake News Detection (Ar
This repo provides the source code & data of our paper "GreaseLM: Graph REASoning Enhanced Language Models"
GreaseLM: Graph REASoning Enhanced Language Models This repo provides the source code & data of our paper "GreaseLM: Graph REASoning Enhanced Language
This repository contains pre-trained models and some evaluation code for our paper Towards Unsupervised Dense Information Retrieval with Contrastive Learning
Contriever: Towards Unsupervised Dense Information Retrieval with Contrastive Learning This repository contains pre-trained models and some evaluation
Annotating the Tweebank Corpus on Named Entity Recognition and Building NLP Models for Social Media Analysis
TweebankNLP This repo contains the new Tweebank-NER dataset and off-the-shelf Twitter-Stanza pipeline for state-of-the-art Tweet NLP, as described in
Revisiting Weakly Supervised Pre-Training of Visual Perception Models
SWAG: Supervised Weakly from hashtAGs This repository contains SWAG models from the paper Revisiting Weakly Supervised Pre-Training of Visual Percepti
On Out-of-distribution Detection with Energy-based Models
On Out-of-distribution Detection with Energy-based Models This repository contains the code for the experiments conducted in the paper On Out-of-distr
PyTorch META-DATASET (Few-shot classification benchmark)
PyTorch META-DATASET (Few-shot classification benchmark) This repo contains a PyTorch implementation of meta-dataset and a unified implementation of s
This repository contains code to train and render Mixture of Volumetric Primitives (MVP) models
Mixture of Volumetric Primitives -- Training and Evaluation This repository contains code to train and render Mixture of Volumetric Primitives (MVP) m
Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models
Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models Abstract Many applications of generative models rely on the marginali
Boltzmann visualization - Visualize the Boltzmann distribution for simple quantum models of molecular motion
Boltzmann visualization - Visualize the Boltzmann distribution for simple quantum models of molecular motion
Vit-ImageClassification - Pytorch ViT for Image classification on the CIFAR10 dataset
Vit-ImageClassification Introduction This project uses ViT to perform image clas
Labelbox is the fastest way to annotate data to build and ship artificial intelligence applications
Labelbox Labelbox is the fastest way to annotate data to build and ship artificial intelligence applications. Use this github repository to help you s
CVAT is free, online, interactive video and image annotation tool for computer vision
Computer Vision Annotation Tool (CVAT) CVAT is free, online, interactive video and image annotation tool for computer vision. It is being used by our
f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation
f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation [Paper] [PyTorch] [MXNet] [Video] This repository provides code for training
BERTopic is a topic modeling technique that leverages 🤗 transformers and c-TF-IDF to create dense clusters allowing for easily interpretable topics whilst keeping important words in the topic descriptions
BERTopic BERTopic is a topic modeling technique that leverages 🤗 transformers and c-TF-IDF to create dense clusters allowing for easily interpretable
Awesome Transformers in Medical Imaging
This repo supplements our Survey on Transformers in Medical Imaging Fahad Shamshad, Salman Khan, Syed Waqas Zamir, Muhammad Haris Khan, Munawar Hayat,
COVID-VIT: Classification of Covid-19 from CT chest images based on vision transformer models
COVID-ViT COVID-VIT: Classification of Covid-19 from CT chest images based on vision transformer models This code is to response to te MIA-COV19 compe
TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification
TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification [NeurIPS 2021] Abstract Multiple instance learn
Pre-trained models for a Cascaded-FCN in caffe and tensorflow that segments
Cascaded-FCN This repository contains the pre-trained models for a Cascaded-FCN in caffe and tensorflow that segments the liver and its lesions out of
Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network
ild-cnn This is supplementary material for the manuscript: "Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neur
Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification
Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification
Raster Vision is an open source Python framework for building computer vision models on satellite, aerial, and other large imagery sets
Raster Vision is an open source Python framework for building computer vision models on satellite, aerial, and other large imagery sets (including obl
This repository contains code, network definitions and pre-trained models for working on remote sensing images using deep learning
Deep learning for Earth Observation This repository contains code, network definitions and pre-trained models for working on remote sensing images usi
Source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree.
self-driving-car In this repository I will share the source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree. Hope this might
A collection of semantic image segmentation models implemented in TensorFlow
A collection of semantic image segmentation models implemented in TensorFlow. Contains data-loaders for the generic and medical benchmark datasets.
On Evaluation Metrics for Graph Generative Models
On Evaluation Metrics for Graph Generative Models Authors: Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, Graham Taylor This is the offic
Creating Multi Task Models With Keras
Creating Multi Task Models With Keras About The Project! I used the keras and Tensorflow Library, To build a Deep Learning Neural Network to Creating
Decision tree is the most powerful and popular tool for classification and prediction
Diabetes Prediction Using Decision Tree Introduction Decision tree is the most powerful and popular tool for classification and prediction. A Decision
To prepare an image processing model to classify the type of disaster based on the image dataset
Disaster Classificiation using CNNs bunnysaini/Disaster-Classificiation Goal To prepare an image processing model to classify the type of disaster bas
ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch
ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch
Feature engineering and machine learning: together at last
Feature engineering and machine learning: together at last! Lambdo is a workflow engine which significantly simplifies data analysis by unifying featu
Tutorials, examples, collections, and everything else that falls into the categories: pattern classification, machine learning, and data mining
**Tutorials, examples, collections, and everything else that falls into the categories: pattern classification, machine learning, and data mining.** S
Sentiment Classification using WSD, Maximum Entropy & Naive Bayes Classifiers
Sentiment Classification using WSD, Maximum Entropy & Naive Bayes Classifiers
TResNet: High Performance GPU-Dedicated Architecture
TResNet: High Performance GPU-Dedicated Architecture paperV2 | pretrained models Official PyTorch Implementation Tal Ridnik, Hussam Lawen, Asaf Noy, I
Image Classification - A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches
A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches
Land Cover Classification Random Forest
You can perform Land Cover Classification on Satellite Images using Random Forest and visualize the result using Earthpy package. Make sure to install the required packages and such as
OCR-D wrapper for detectron2 based segmentation models
ocrd_detectron2 OCR-D wrapper for detectron2 based segmentation models Introduction Installation Usage OCR-D processor interface ocrd-detectron2-segm
Open solution to the Toxic Comment Classification Challenge
Starter code: Kaggle Toxic Comment Classification Challenge More competitions 🎇 Check collection of public projects 🎁 , where you can find multiple
Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents
Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents [Project Page] [Paper] [Video] Wenlong Huang1, Pieter Abbee
This project has Classification and Clustering done Via kNN and K-Means respectfully
This project has Classification and Clustering done Via kNN and K-Means respectfully. It later tests its efficiency via F1/accuracy/recall/precision for kNN and Davies-Bouldin Index for Clustering. The Data is also visually represented.
TLXZoo - Pre-trained models based on TensorLayerX
Pre-trained models based on TensorLayerX. TensorLayerX is a multi-backend AI fra
This Deep Learning Model Predicts that from which disease you are suffering.
Deep-Learning-Project This Deep Learning Model Predicts that from which disease you are suffering. This Project Covers the Topics of Deep Learning Int
Titanic Traveller Survivability Prediction
The aim of the mini project is predict whether or not a passenger survived based on attributes such as their age, sex, passenger class, where they embarked and more.
Binary Classification Problem with Machine Learning
Binary Classification Problem with Machine Learning Solving Approach: 1) Ultimate Goal of the Assignment: This assignment is about solving a binary cl
Blackstone is a spaCy model and library for processing long-form, unstructured legal text
Blackstone Blackstone is a spaCy model and library for processing long-form, unstructured legal text. Blackstone is an experimental research project f
Grover is a model for Neural Fake News -- both generation and detectio
Grover is a model for Neural Fake News -- both generation and detection. However, it probably can also be used for other generation tasks.
ECLARE: Extreme Classification with Label Graph Correlations
ECLARE ECLARE: Extreme Classification with Label Graph Correlations @InProceedings{Mittal21b, author = "Mittal, A. and Sachdeva, N. and Agrawal
GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification
GalaXC GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification @InProceedings{Saini21, author = {Saini, D. and Jain,
The Official PyTorch Implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 spotlight paper)
Official PyTorch implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 Spotlight Paper) Zhisheng
PyTorch implementation of image classification models for CIFAR-10/CIFAR-100/MNIST/FashionMNIST/Kuzushiji-MNIST/ImageNet
PyTorch Image Classification Following papers are implemented using PyTorch. ResNet (1512.03385) ResNet-preact (1603.05027) WRN (1605.07146) DenseNet
Title: Heart-Failure-Classification
This Notebook is based off an open source dataset available on where I have created models to classify patients who can potentially witness heart failure on the basis of various parameters. The best model had an accuracy of 94% and a recall of 91%
T‘rex Park is a Youzan sponsored project. Offering Chinese NLP and image models pretrained from E-commerce datasets
T‘rex Park is a Youzan sponsored project. Offering Chinese NLP and image models pretrained from E-commerce datasets (product titles, images, comments, etc.).
TweebankNLP - Pre-trained Tweet NLP Pipeline (NER, tokenization, lemmatization, POS tagging, dependency parsing) + Models + Tweebank-NER
TweebankNLP This repo contains the new Tweebank-NER dataset and Twitter-Stanza p
ColossalAI-Examples - Examples of training models with hybrid parallelism using ColossalAI
ColossalAI-Examples This repository contains examples of training models with Co
Pipeline for employing a Lightweight deep learning models for LOW-power systems
PL-LOW A high-performance deep learning model lightweight pipeline that gradually lightens deep neural networks in order to utilize high-performance d
🚀 PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)"
PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)" Unofficial PyTorch Implementation of Progressi
cl;asification problem using classification models in supervised learning
wine-quality-predition---classification cl;asification problem using classification models in supervised learning Wine Quality Prediction Analysis - C
Mortality risk prediction for COVID-19 patients using XGBoost models
Mortality risk prediction for COVID-19 patients using XGBoost models Using demographic and lab test data received from the HM Hospitales in Spain, I b
A handy tool for common machine learning models' hyper-parameter tuning.
Common machine learning models' hyperparameter tuning This repo is for a collection of hyper-parameter tuning for "common" machine learning models, in
Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021
Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021
Official Code Release for "CLIP-Adapter: Better Vision-Language Models with Feature Adapters"
Official Code Release for "CLIP-Adapter: Better Vision-Language Models with Feature Adapters" Pipeline of CLIP-Adapter CLIP-Adapter is a drop-in modul
In this project, we compared Spanish BERT and Multilingual BERT in the Sentiment Analysis task.
Applying BERT Fine Tuning to Sentiment Classification on Amazon Reviews Abstract Sentiment analysis has made great progress in recent years, due to th
Gender Classification Machine Learning Model using Sk-learn in Python with 97%+ accuracy and deployment
Gender-classification This is a ML model to classify Male and Females using some physical characterstics Data. Python Libraries like Pandas,Numpy and
The original weights of some Caffe models, ported to PyTorch.
pytorch-caffe-models This repo contains the original weights of some Caffe models, ported to PyTorch. Currently there are: GoogLeNet (Going Deeper wit
Mixed Neural Likelihood Estimation for models of decision-making
Mixed neural likelihood estimation for models of decision-making Mixed neural likelihood estimation (MNLE) enables Bayesian parameter inference for mo
Animal Sound Classification (Cats Vrs Dogs Audio Sentiment Classification)
this is a simple artificial neural network model using deep learning and torch-audio to classify cats and dog sounds.
ML models and internal tensors 3D visualizer
The free Zetane Viewer is a tool to help understand and accelerate discovery in machine learning and artificial neural networks. It can be used to ope
Unofficial PyTorch Implementation of "Augmenting Convolutional networks with attention-based aggregation"
Pytorch Implementation of Augmenting Convolutional networks with attention-based aggregation This is the unofficial PyTorch Implementation of "Augment
[SDM 2022] Towards Similarity-Aware Time-Series Classification
SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie
In this Notebook I've build some machine-learning and deep-learning to classify corona virus tweets, in both multi class classification and binary classification.
Hello, This Notebook Contains Example of Corona Virus Tweets Multi Class Classification. - Classes is: Extremely Positive, Positive, Extremely Negativ
Implementation of ML models like Decision tree, Naive Bayes, Logistic Regression and many other
ML_Model_implementaion Implementation of ML models like Decision tree, Naive Bayes, Logistic Regression and many other dectree_model: Implementation o
Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data
VIMuRe Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data. If you use this code please cite this article (preprint). De
MlTr: Multi-label Classification with Transformer
MlTr: Multi-label Classification with Transformer This is official implement of "MlTr: Multi-label Classification with Transformer". Abstract The task
"Exploring Vision Transformers for Fine-grained Classification" at CVPRW FGVC8
FGVC8 Exploring Vision Transformers for Fine-grained Classification paper presented at the CVPR 2021, The Eight Workshop on Fine-Grained Visual Catego
Classification Modeling: Probability of Default
Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information
VGG16 model-based classification project about brain tumor detection.
Brain-Tumor-Classification-with-MRI VGG16 model-based classification project about brain tumor detection. First, you can check what people are doing o
NeWT: Natural World Tasks
NeWT: Natural World Tasks This repository contains resources for working with the NeWT dataset. ❗ At this time the binary tasks are not publicly avail
As a part of the HAKE project, includes the reproduced SOTA models and the corresponding HAKE-enhanced versions (CVPR2020).
HAKE-Action HAKE-Action (TensorFlow) is a project to open the SOTA action understanding studies based on our Human Activity Knowledge Engine. It inclu
Implementing SYNTHESIZER: Rethinking Self-Attention in Transformer Models using Pytorch
Implementing SYNTHESIZER: Rethinking Self-Attention in Transformer Models using Pytorch Reference Paper URL Author: Yi Tay, Dara Bahri, Donald Metzler
A natural language processing model for sequential sentence classification in medical abstracts.
NLP PubMed Medical Research Paper Abstract (Randomized Controlled Trial) A natural language processing model for sequential sentence classification in
Classification Modeling: Probability of Default
Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information
This is a Image aid classification software based on python TK library development
This is a Image aid classification software based on python TK library development.
Node-level Graph Regression with Deep Gaussian Process Models
Node-level Graph Regression with Deep Gaussian Process Models Prerequests our implementation is mainly based on tensorflow 1.x and gpflow 1.x: python
Meta learning algorithms to train cross-lingual NLI (multi-task) models
Meta learning algorithms to train cross-lingual NLI (multi-task) models
Exploring Machine Learning Models for detecting anomalous behavior in credit-card transactions. It's crucial that credit-card companies are able to recognize fraudulent activity so that customers are not charged for items they didn't purchase.
Credit Card Fraud Detection Came across this mocked-up dataset of customer transactions at [Capital One Recruitment Challenge](https://github.com/Capi
Language-Agnostic Website Embedding and Classification
Homepage2Vec Language-Agnostic Website Embedding and Classification based on Curlie labels https://arxiv.org/pdf/2201.03677.pdf Homepage2Vec is a pre-
Unofficial JAX implementations of Deep Learning models
JAX Models Table of Contents About The Project Getting Started Prerequisites Installation Usage Contributing License Contact About The Project The JAX
This is the official implementation of our proposed SwinMR
SwinMR This is the official implementation of our proposed SwinMR: Swin Transformer for Fast MRI Please cite: @article{huang2022swin, title={Swi
Public Models considered for emotion estimation from EEG
Emotion-EEG Set of models for emotion estimation from EEG. Composed by the combination of two deep-learing models learning together (RNN and CNN) with
Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples
Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples (WACV 2022) and Beyond Simple Meta-Learning: Multi-Purpose Models for Multi-Domain, Active and Continual Few-Shot Learning (TPAMI 2022 - in submission)
Long text token classification using LongFormer
Long text token classification using LongFormer
The final project of "Applying AI to 2D Medical Imaging Data" of "AI for Healthcare" nanodegree - Udacity.
Pneumonia Detection from X-Rays Project Overview In this project, you will apply the skills that you have acquired in this 2D medical imaging course t
Simple Tensorflow implementation of Toward Spatially Unbiased Generative Models (ICCV 2021)
Spatial unbiased GANs — Simple TensorFlow Implementation [Paper] : Toward Spatially Unbiased Generative Models (ICCV 2021) Abstract Recent image gener
Pytorch implementation of MLP-Mixer with loading pre-trained models.
MLP-Mixer-Pytorch PyTorch implementation of MLP-Mixer: An all-MLP Architecture for Vision with the function of loading official ImageNet pre-trained p
Generic Foreground Segmentation in Images
Pixel Objectness The following repository contains pretrained model for pixel objectness. Please visit our project page for the paper and visual resul
Film review classification
Film review classification Решение задачи классификации отзывов на фильмы на положительные и отрицательные с помощью рекуррентных нейронных сетей 1. З
Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.
Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.
This repository introduces a short project about Transfer Learning for Classification of MRI Images.
Transfer Learning for MRI Images Classification This repository introduces a short project made during my stay at Neuromatch Summer School 2021. This