679 Repositories
Python contrastive-feature-loss Libraries
The repo contains the code of the ACL2020 paper `Dice Loss for Data-imbalanced NLP Tasks`
Dice Loss for NLP Tasks This repository contains code for Dice Loss for Data-imbalanced NLP Tasks at ACL2020. Setup Install Package Dependencies The c
This is the official implementation of 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object Detection, built on SECOND.
3D-CVF This is the official implementation of 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object
Official PyTorch implementation of "IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos", CVPRW 2021
IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos Introduction This repo is official PyTorch implementatio
The implementation of "Bootstrapping Semantic Segmentation with Regional Contrast".
ReCo - Regional Contrast This repository contains the source code of ReCo and baselines from the paper, Bootstrapping Semantic Segmentation with Regio
The official repo of the CVPR2021 oral paper: Representative Batch Normalization with Feature Calibration
Representative Batch Normalization (RBN) with Feature Calibration The official implementation of the CVPR2021 oral paper: Representative Batch Normali
CondenseNet V2: Sparse Feature Reactivation for Deep Networks
CondenseNetV2 This repository is the official Pytorch implementation for "CondenseNet V2: Sparse Feature Reactivation for Deep Networks" paper by Le Y
Providing the solutions for high-frequency trading (HFT) strategies using data science approaches (Machine Learning) on Full Orderbook Tick Data.
Modeling High-Frequency Limit Order Book Dynamics Using Machine Learning Framework to capture the dynamics of high-frequency limit order books. Overvi
CLASP - Contrastive Language-Aminoacid Sequence Pretraining
CLASP - Contrastive Language-Aminoacid Sequence Pretraining Repository for creating models pretrained on language and aminoacid sequences similar to C
Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation
Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation This is the official repository for our paper Neural Reprojection Error
Joint deep network for feature line detection and description
SOLD² - Self-supervised Occlusion-aware Line Description and Detection This repository contains the implementation of the paper: SOLD² : Self-supervis
PyTorch implementation for COMPLETER: Incomplete Multi-view Clustering via Contrastive Prediction (CVPR 2021)
Completer: Incomplete Multi-view Clustering via Contrastive Prediction This repo contains the code and data of the following paper accepted by CVPR 20
Code for "LoFTR: Detector-Free Local Feature Matching with Transformers", CVPR 2021
LoFTR: Detector-Free Local Feature Matching with Transformers Project Page | Paper LoFTR: Detector-Free Local Feature Matching with Transformers Jiami
A collection of loss functions for medical image segmentation
A collection of loss functions for medical image segmentation
Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation
SimplePose Code and pre-trained models for our paper, “Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation”, a
git《FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding》(CVPR 2021) GitHub: [fig8]
FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding (CVPR 2021) This repo contains the implementation of our state-of-the-art fewshot ob
Official implementation for (Refine Myself by Teaching Myself : Feature Refinement via Self-Knowledge Distillation, CVPR-2021)
FRSKD Official implementation for Refine Myself by Teaching Myself : Feature Refinement via Self-Knowledge Distillation (CVPR-2021) Requirements Pytho
Automated Machine Learning Pipeline with Feature Engineering and Hyper-Parameters Tuning
The mljar-supervised is an Automated Machine Learning Python package that works with tabular data. I
PyTorch extensions for fast R&D prototyping and Kaggle farming
Pytorch-toolbelt A pytorch-toolbelt is a Python library with a set of bells and whistles for PyTorch for fast R&D prototyping and Kaggle farming: What
Automatic extraction of relevant features from time series:
tsfresh This repository contains the TSFRESH python package. The abbreviation stands for "Time Series Feature extraction based on scalable hypothesis
git《Investigating Loss Functions for Extreme Super-Resolution》(CVPR 2020) GitHub:
Investigating Loss Functions for Extreme Super-Resolution NTIRE 2020 Perceptual Extreme Super-Resolution Submission. Our method ranked first and secon
Contrastive Fact Verification
VitaminC This repository contains the dataset and models for the NAACL 2021 paper: Get Your Vitamin C! Robust Fact Verification with Contrastive Evide
Implementation of our paper 'RESA: Recurrent Feature-Shift Aggregator for Lane Detection' in AAAI2021.
RESA PyTorch implementation of the paper "RESA: Recurrent Feature-Shift Aggregator for Lane Detection". Our paper has been accepted by AAAI2021. Intro
Code for CoMatch: Semi-supervised Learning with Contrastive Graph Regularization
CoMatch: Semi-supervised Learning with Contrastive Graph Regularization (Salesforce Research) This is a PyTorch implementation of the CoMatch paper [B
CDIoU and CDIoU loss is like a convenient plug-in that can be used in multiple models. CDIoU and CDIoU loss have different excellent performances in several models such as Faster R-CNN, YOLOv4, RetinaNet and . There is a maximum AP improvement of 1.9% and an average AP of 0.8% improvement on MS COCO dataset, compared to traditional evaluation-feedback modules. Here we just use as an example to illustrate the code.
CDIoU-CDIoUloss CDIoU and CDIoU loss is like a convenient plug-in that can be used in multiple models. CDIoU and CDIoU loss have different excellent p
Convolutional Recurrent Neural Networks(CRNN) for Scene Text Recognition
CRNN_Tensorflow This is a TensorFlow implementation of a Deep Neural Network for scene text recognition. It is mainly based on the paper "An End-to-En
Tensorflow-based CNN+LSTM trained with CTC-loss for OCR
Overview This collection demonstrates how to construct and train a deep, bidirectional stacked LSTM using CNN features as input with CTC loss to perfo
Pytorch implementation of PSEnet with Pyramid Attention Network as feature extractor
Scene Text-Spotting based on PSEnet+CRNN Pytorch implementation of an end to end Text-Spotter with a PSEnet text detector and CRNN text recognizer. We
Use Convolutional Recurrent Neural Network to recognize the Handwritten line text image without pre segmentation into words or characters. Use CTC loss Function to train.
Handwritten Line Text Recognition using Deep Learning with Tensorflow Description Use Convolutional Recurrent Neural Network to recognize the Handwrit
AntroPy: entropy and complexity of (EEG) time-series in Python
AntroPy is a Python 3 package providing several time-efficient algorithms for computing the complexity of time-series. It can be used for example to e
[CIKM 2019] Code and dataset for "Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Prediction"
FiGNN for CTR prediction The code and data for our paper in CIKM2019: Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Predicti
You Only Look One-level Feature (YOLOF), CVPR2021, Detectron2
You Only Look One-level Feature (YOLOF), CVPR2021 A simple, fast, and efficient object detector without FPN. This repo provides a neat implementation
Code for the paper "Training GANs with Stronger Augmentations via Contrastive Discriminator" (ICLR 2021)
Training GANs with Stronger Augmentations via Contrastive Discriminator (ICLR 2021) This repository contains the code for reproducing the paper: Train
Unofficial implementation of "TTNet: Real-time temporal and spatial video analysis of table tennis" (CVPR 2020)
TTNet-Pytorch The implementation for the paper "TTNet: Real-time temporal and spatial video analysis of table tennis" An introduction of the project c
Back to the Feature: Learning Robust Camera Localization from Pixels to Pose (CVPR 2021)
Back to the Feature with PixLoc We introduce PixLoc, a neural network for end-to-end learning of camera localization from an image and a 3D model via
Dogs classification with Deep Metric Learning using some popular losses
Tsinghua Dogs classification with Deep Metric Learning 1. Introduction Tsinghua Dogs dataset Tsinghua Dogs is a fine-grained classification dataset fo
Feature extraction made simple with torchextractor
torchextractor: PyTorch Intermediate Feature Extraction Introduction Too many times some model definitions get remorselessly copy-pasted just because
Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.
LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens
EDCNN: Edge enhancement-based Densely Connected Network with Compound Loss for Low-Dose CT Denoising
EDCNN: Edge enhancement-based Densely Connected Network with Compound Loss for Low-Dose CT Denoising By Tengfei Liang, Yi Jin, Yidong Li, Tao Wang. Th
Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning, CVPR 2021
Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning By Zhenda Xie*, Yutong Lin*, Zheng Zhang, Yue Ca
Let Python optimize the best stop loss and take profits for your TradingView strategy.
TradingView Machine Learning TradeView is a free and open source Trading View bot written in Python. It is designed to support all major exchanges. It
LibXtract is a simple, portable, lightweight library of audio feature extraction functions.
LibXtract LibXtract is a simple, portable, lightweight library of audio feature extraction functions. The purpose of the library is to provide a relat
Genetic feature selection module for scikit-learn
sklearn-genetic Genetic feature selection module for scikit-learn Genetic algorithms mimic the process of natural selection to search for optimal valu
A scikit-learn-compatible Python implementation of ReBATE, a suite of Relief-based feature selection algorithms for Machine Learning.
Master status: Development status: Package information: scikit-rebate This package includes a scikit-learn-compatible Python implementation of ReBATE,
A fast xgboost feature selection algorithm
BoostARoota A Fast XGBoost Feature Selection Algorithm (plus other sklearn tree-based classifiers) Why Create Another Algorithm? Automated processes l
Python implementations of the Boruta all-relevant feature selection method.
boruta_py This project hosts Python implementations of the Boruta all-relevant feature selection method. Related blog post How to install Install with
open-source feature selection repository in python
scikit-feature Feature selection repository scikit-feature in Python. scikit-feature is an open-source feature selection repository in Python develope
Automatic extraction of relevant features from time series:
tsfresh This repository contains the TSFRESH python package. The abbreviation stands for "Time Series Feature extraction based on scalable hypothesis
A sklearn-compatible Python implementation of Multifactor Dimensionality Reduction (MDR) for feature construction.
Master status: Development status: Package information: MDR A scikit-learn-compatible Python implementation of Multifactor Dimensionality Reduction (M
a feature engineering wrapper for sklearn
Few Few is a Feature Engineering Wrapper for scikit-learn. Few looks for a set of feature transformations that work best with a specified machine lear
An open source python library for automated feature engineering
"One of the holy grails of machine learning is to automate more and more of the feature engineering process." ― Pedro Domingos, A Few Useful Things to
Contrastive Explanation (Foil Trees), developed at TNO/Utrecht University
Contrastive Explanation (Foil Trees) Contrastive and counterfactual explanations for machine learning (ML) Marcel Robeer (2018-2020), TNO/Utrecht Univ
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.
Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista
Official code for paper "Optimization for Oriented Object Detection via Representation Invariance Loss".
Optimization for Oriented Object Detection via Representation Invariance Loss By Qi Ming, Zhiqiang Zhou, Lingjuan Miao, Xue Yang, and Yunpeng Dong. Th
Dense Contrastive Learning (DenseCL) for self-supervised representation learning, CVPR 2021.
Dense Contrastive Learning for Self-Supervised Visual Pre-Training This project hosts the code for implementing the DenseCL algorithm for se
Indico - A feature-rich event management system, made @ CERN, the place where the Web was born.
Indico Indico is: 🗓 a general-purpose event management tool; 🌍 fully web-based; 🧩 feature-rich but also extensible through the use of plugins; ⚖️ O
Indico - A feature-rich event management system, made @ CERN, the place where the Web was born.
Indico Indico is: 🗓 a general-purpose event management tool; 🌍 fully web-based; 🧩 feature-rich but also extensible through the use of plugins; ⚖️ O
A comprehensive, feature-rich, open source, and portable, collection of Solitaire games.
PySol Fan Club edition This is an open source and portable (Windows, Linux and Mac OS X) collection of Card Solitaire/Patience games written in Python
rewise is an unofficial wrapper for google search's auto-complete feature
rewise is an unofficial wrapper for google search's auto-complete feature
Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals.
Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals This repo contains the Pytorch implementation of our paper: Unsupervised Seman
Contrastive Learning Inverts the Data Generating Process
Official code to reproduce the results and data presented in the paper Contrastive Learning Inverts the Data Generating Process.
Seach Losses of our paper 'Loss Function Discovery for Object Detection via Convergence-Simulation Driven Search', accepted by ICLR 2021.
CSE-Autoloss Designing proper loss functions for vision tasks has been a long-standing research direction to advance the capability of existing models
Python Audio Analysis Library: Feature Extraction, Classification, Segmentation and Applications
A Python library for audio feature extraction, classification, segmentation and applications This doc contains general info. Click here for the comple
:speech_balloon: SpeechPy - A Library for Speech Processing and Recognition: http://speechpy.readthedocs.io/en/latest/
SpeechPy Official Project Documentation Table of Contents Documentation Which Python versions are supported Citation How to Install? Local Installatio
Exploring Cross-Image Pixel Contrast for Semantic Segmentation
Exploring Cross-Image Pixel Contrast for Semantic Segmentation Exploring Cross-Image Pixel Contrast for Semantic Segmentation, Wenguan Wang, Tianfei Z
Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation
Unseen Object Clustering: Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation Introduction In this work, we propose a new method
CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Detection in Remote Sensing Images
CFC-Net This project hosts the official implementation for the paper: CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Dete
A feature flipper for Django
README Django Waffle is (yet another) feature flipper for Django. You can define the conditions for which a flag should be active, and use it in a num
PyTorch code for the paper: FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning
FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning This is the PyTorch implementation of our paper: FeatMatch: Feature-Based Augmentat
Local server for IDA Lumina feature
About POC of an offline server for IDA Lumina feature.
This is the code for the paper "Contrastive Clustering" (AAAI 2021)
Contrastive Clustering (CC) This is the code for the paper "Contrastive Clustering" (AAAI 2021) Dependency python=3.7 pytorch=1.6.0 torchvision=0.8
Implementation of Supervised Contrastive Learning with AMP, EMA, SWA, and many other tricks
SupCon-Framework The repo is an implementation of Supervised Contrastive Learning. It's based on another implementation, but with several differencies
RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving
RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving (AAAI2021). RTS3D is efficiency and accuracy s
Create animations for the optimization trajectory of neural nets
Animating the Optimization Trajectory of Neural Nets loss-landscape-anim lets you create animated optimization path in a 2D slice of the loss landscap
The official implementation of NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation [ICLR-2021]. https://arxiv.org/pdf/2101.12378.pdf
NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation [ICLR-2021] Release Notes The offical PyTorch implementation of NeMo, p
Automates Machine Learning Pipeline with Feature Engineering and Hyper-Parameters Tuning :rocket:
MLJAR Automated Machine Learning Documentation: https://supervised.mljar.com/ Source Code: https://github.com/mljar/mljar-supervised Table of Contents
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.
Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista
[UNMAINTAINED] Automated machine learning for analytics & production
auto_ml Automated machine learning for production and analytics Installation pip install auto_ml Getting started from auto_ml import Predictor from au
Indico - A feature-rich event management system, made @ CERN, the place where the Web was born.
Indico Indico is: ? a general-purpose event management tool; ? fully web-based; ? feature-rich but also extensible through the use of plugins; ⚖️ O
Python Audio Analysis Library: Feature Extraction, Classification, Segmentation and Applications
A Python library for audio feature extraction, classification, segmentation and applications This doc contains general info. Click here for the comple