679 Repositories
Python contrastive-feature-loss Libraries
Shuffle and add items from jellyfin to mpd (use in tandem with jellyfin-mopidy and mpd-mopidy). Similar to ncmpcpp's "Add random" feature..
jellyshuf Essentially implements ncmpcpp's add random feature (default hotkey: `) through a script which grabs info from jellyfin api itself. jellyfin
Virtual Dance Reality Stage is a feature that offers you to share a stage with another user virtually.
Virtual Dance Reality Stage is a feature that offers you to share a stage with another user virtually. It uses the concept of Image Background Removal using DeepLab Architecture (based on Semantic Segmentation), which is a state-of-art DL model from Google Brain.
Getting Profit and Loss Make Easy From Binance
Getting Profit and Loss Make Easy From Binance I have been in Binance Automated Trading for some time and have generated a lot of transaction records,
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer
CGTransformer Code for our AAAI 2022 paper "Contrastive-Geometry Transformer network for Generalized 3D Pose Transfer" Contrastive-Geometry Transforme
DeepDiffusion: Unsupervised Learning of Retrieval-adapted Representations via Diffusion-based Ranking on Latent Feature Manifold
DeepDiffusion Introduction This repository provides the code of the DeepDiffusion algorithm for unsupervised learning of retrieval-adapted representat
[ICME 2021 Oral] CORE-Text: Improving Scene Text Detection with Contrastive Relational Reasoning
CORE-Text: Improving Scene Text Detection with Contrastive Relational Reasoning This repository is the official PyTorch implementation of CORE-Text, a
Semantically Contrastive Learning for Low-light Image Enhancement
Semantically Contrastive Learning for Low-light Image Enhancement Here, we propose an effective semantically contrastive learning paradigm for Low-lig
(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"
(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer
A C-like hardware description language (HDL) adding high level synthesis(HLS)-like automatic pipelining as a language construct/compiler feature.
██████╗ ██╗██████╗ ███████╗██╗ ██╗███╗ ██╗███████╗ ██████╗ ██╔══██╗██║██╔══██╗██╔════╝██║ ██║████╗ ██║██╔════╝██╔════╝ ██████╔╝██║██████╔╝█
Searching Parameterized AP Loss for Object Detection.
Parameterized AP Loss By Chenxin Tao, Zizhang Li, Xizhou Zhu, Gao Huang, Yong Liu, Jifeng Dai This is the official implementation of the Neurips 2021
Create 3d loss surface visualizations, with optimizer path. Issues welcome!
MLVTK A loss surface visualization tool Simple feed-forward network trained on chess data, using elu activation and Adam optimizer Simple feed-forward
a practicable framework used in Deep Learning. So far UDL only provide DCFNet implementation for the ICCV paper (Dynamic Cross Feature Fusion for Remote Sensing Pansharpening)
UDL UDL is a practicable framework used in Deep Learning (computer vision). Benchmark codes, results and models are available in UDL, please contact @
Simplest QRGenerator with a cool feature (-sh=True :D)
Simple QR-Codes Generator :D Generates QR-codes, nothing more and nothing less . How to use Just run ./install.sh to set all the dependencies up, th
Implementation of the paper ''Implicit Feature Refinement for Instance Segmentation''.
Implicit Feature Refinement for Instance Segmentation This repository is an official implementation of the ACM Multimedia 2021 paper Implicit Feature
Official implementation of the Neurips 2021 paper Searching Parameterized AP Loss for Object Detection.
Parameterized AP Loss By Chenxin Tao, Zizhang Li, Xizhou Zhu, Gao Huang, Yong Liu, Jifeng Dai This is the official implementation of the Neurips 2021
Supplemental learning materials for "Fourier Feature Networks and Neural Volume Rendering"
Fourier Feature Networks and Neural Volume Rendering This repository is a companion to a lecture given at the University of Cambridge Engineering Depa
Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency
Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency This is a official implementation of the CycleContrast introduced in
VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning
VarCLR: Variable Representation Pre-training via Contrastive Learning New: Paper accepted by ICSE 2022. Preprint at arXiv! This repository contain
PyTorch implementation of our paper: "Artistic Style Transfer with Internal-external Learning and Contrastive Learning"
Artistic Style Transfer with Internal-external Learning and Contrastive Learning This is the official PyTorch implementation of our paper: "Artistic S
Class-Balanced Loss Based on Effective Number of Samples. CVPR 2019
Class-Balanced Loss Based on Effective Number of Samples Tensorflow code for the paper: Class-Balanced Loss Based on Effective Number of Samples Yin C
[NeurIPS 2019] Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss
Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, Tengyu Ma This is the offi
Pytorch Implementations of large number classical backbone CNNs, data enhancement, torch loss, attention, visualization and some common algorithms.
Torch-template-for-deep-learning Pytorch implementations of some **classical backbone CNNs, data enhancement, torch loss, attention, visualization and
A concise but complete implementation of CLIP with various experimental improvements from recent papers
x-clip (wip) A concise but complete implementation of CLIP with various experimental improvements from recent papers Install $ pip install x-clip Usag
A concise but complete implementation of CLIP with various experimental improvements from recent papers
x-clip (wip) A concise but complete implementation of CLIP with various experimental improvements from recent papers Install $ pip install x-clip Usag
Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective
Does-MAML-Only-Work-via-Feature-Re-use-A-Data-Set-Centric-Perspective Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective Installin
SHRIMP: Sparser Random Feature Models via Iterative Magnitude Pruning
SHRIMP: Sparser Random Feature Models via Iterative Magnitude Pruning This repository is the official implementation of "SHRIMP: Sparser Random Featur
This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.
AimCLR This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Reco
[NeurIPS 2021] COCO-LM: Correcting and Contrasting Text Sequences for Language Model Pretraining
COCO-LM This repository contains the scripts for fine-tuning COCO-LM pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: COCO-LM: Correcting an
The implementation of the paper "A Deep Feature Aggregation Network for Accurate Indoor Camera Localization".
A Deep Feature Aggregation Network for Accurate Indoor Camera Localization This is the PyTorch implementation of our paper "A Deep Feature Aggregation
This is Official implementation for "Pose-guided Feature Disentangling for Occluded Person Re-Identification Based on Transformer" in AAAI2022
PFD:Pose-guided Feature Disentangling for Occluded Person Re-identification based on Transformer This repo is the official implementation of "Pose-gui
VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning
VarCLR: Variable Representation Pre-training via Contrastive Learning New: Paper accepted by ICSE 2022. Preprint at arXiv! This repository contain
[AAAI 2022] Separate Contrastive Learning for Organs-at-Risk and Gross-Tumor-Volume Segmentation with Limited Annotation
A paper Introduction This is an official release of the paper Separate Contrastive Learning for Organs-at-Risk and Gross-Tumor-Volume Segmentation wit
Code of Puregaze: Purifying gaze feature for generalizable gaze estimation, AAAI 2022.
PureGaze: Purifying Gaze Feature for Generalizable Gaze Estimation Description Our work is accpeted by AAAI 2022. Picture: We propose a domain-general
A simple library that implements CLIP guided loss in PyTorch.
pytorch_clip_guided_loss: Pytorch implementation of the CLIP guided loss for Text-To-Image, Image-To-Image, or Image-To-Text generation. A simple libr
Source code and dataset of the paper "Contrastive Adaptive Propagation Graph Neural Networks forEfficient Graph Learning"
CAPGNN Source code and dataset of the paper "Contrastive Adaptive Propagation Graph Neural Networks forEfficient Graph Learning" Paper URL: https://ar
Official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.
AimCLR This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Reco
The functions we created are included in a script. The necessary parts for pre-processing were taken. Analysis complete.
Feature-Engineering The functions we created are included in a script. The necessary parts for pre-processing were taken. Analysis complete. Business
A Loss Function for Generative Neural Networks Based on Watson’s Perceptual Model
This repository contains the similarity metrics designed and evaluated in the paper, and instructions and code to re-run the experiments. Implementation in the deep-learning framework PyTorch
Code for EMNLP 2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training"
SCAPT-ABSA Code for EMNLP2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training" Overvie
Joint Detection and Identification Feature Learning for Person Search
Person Search Project This repository hosts the code for our paper Joint Detection and Identification Feature Learning for Person Search. The code is
CLIP (Contrastive Language–Image Pre-training) trained on Indonesian data
CLIP-Indonesian CLIP (Radford et al., 2021) is a multimodal model that can connect images and text by training a vision encoder and a text encoder joi
Contrastive Language-Image Pretraining
CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair
CoRe: Contrastive Recurrent State-Space Models
CoRe: Contrastive Recurrent State-Space Models This code implements the CoRe model and reproduces experimental results found in Robust Robotic Control
Code and Data for the paper: Molecular Contrastive Learning with Chemical Element Knowledge Graph [AAAI 2022]
Knowledge-enhanced Contrastive Learning (KCL) Molecular Contrastive Learning with Chemical Element Knowledge Graph [ AAAI 2022 ]. We construct a Chemi
ExCon: Explanation-driven Supervised Contrastive Learning
ExCon: Explanation-driven Supervised Contrastive Learning Link to the paper: https://arxiv.org/pdf/2111.14271.pdf Contributors of this repo: Zhibo Zha
Pytorch implementation of Feature Pyramid Network (FPN) for Object Detection
fpn.pytorch Pytorch implementation of Feature Pyramid Network (FPN) for Object Detection Introduction This project inherits the property of our pytorc
UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss
UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss This repository contains the TensorFlow implementation of the paper UnF
[NeurIPS 2021] Towards Better Understanding of Training Certifiably Robust Models against Adversarial Examples | ⛰️⚠️
Towards Better Understanding of Training Certifiably Robust Models against Adversarial Examples This repository is the official implementation of "Tow
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021
Directed Graph Contrastive Learning Paper | Poster | Supplementary The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this
PyTorch implementation of "Debiased Visual Question Answering from Feature and Sample Perspectives" (NeurIPS 2021)
D-VQA We provide the PyTorch implementation for Debiased Visual Question Answering from Feature and Sample Perspectives (NeurIPS 2021). Dependencies P
Implementation of Pooling by Sliced-Wasserstein Embedding (NeurIPS 2021)
PSWE: Pooling by Sliced-Wasserstein Embedding (NeurIPS 2021) PSWE is a permutation-invariant feature aggregation/pooling method based on sliced-Wasser
This is the official PyTorch implementation of our paper: "Artistic Style Transfer with Internal-external Learning and Contrastive Learning".
Artistic Style Transfer with Internal-external Learning and Contrastive Learning This is the official PyTorch implementation of our paper: "Artistic S
TAUFE: Task-Agnostic Undesirable Feature DeactivationUsing Out-of-Distribution Data
A deep neural network (DNN) has achieved great success in many machine learning tasks by virtue of its high expressive power. However, its prediction can be easily biased to undesirable features, which are not essential for solving the target task and are even imperceptible to a human, thereby resulting in poor generalization
Focal Loss for Dense Rotation Object Detection
Convert ResNets weights from GluonCV to Tensorflow Abstract GluonCV released some new resnet pre-training weights and designed some new resnets (such
Implement the Pareto Optimizer and pcgrad to make a self-adaptive loss for multi-task
multi-task_losses_optimizer Implement the Pareto Optimizer and pcgrad to make a self-adaptive loss for multi-task 已经实验过了,不会有cuda out of memory情况 ##Par
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"
CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2
ExCon: Explanation-driven Supervised Contrastive Learning
ExCon: Explanation-driven Supervised Contrastive Learning Contributors of this repo: Zhibo Zhang ([email protected]) Jongseong Jang (j.jang@lg
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"
CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2
Flexible time series feature extraction & processing
tsflex is a toolkit for flexible time series processing & feature extraction, that is efficient and makes few assumptions about sequence data. Useful
SPCL: A New Framework for Domain Adaptive Semantic Segmentation via Semantic Prototype-based Contrastive Learning
SPCL SPCL: A New Framework for Domain Adaptive Semantic Segmentation via Semantic Prototype-based Contrastive Learning Update on 2021/11/25: ArXiv Ver
Unsupervised Feature Ranking via Attribute Networks.
FRANe Unsupervised Feature Ranking via Attribute Networks (FRANe) converts a dataset into a network (graph) with nodes that correspond to the features
Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment".
#backdoor-HSIC (bd_HSIC) Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment". To generate
[CIKM 2021] Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning
Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning. This repo contains the PyTorch code and implementation for the paper E
Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning.
Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning. Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive
An official implementation of "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation" (CVPR 2021) in PyTorch.
BANA This is the implementation of the paper "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation". For more inf
Unofficial implementation of Proxy Anchor Loss for Deep Metric Learning
Proxy Anchor Loss for Deep Metric Learning Unofficial pytorch, tensorflow and mxnet implementations of Proxy Anchor Loss for Deep Metric Learning. Not
Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach
This repository holds the implementation for paper Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach Download our preproc
Resources related to EMNLP 2021 paper "FAME: Feature-Based Adversarial Meta-Embeddings for Robust Input Representations"
FAME: Feature-based Adversarial Meta-Embeddings This is the companion code for the experiments reported in the paper "FAME: Feature-Based Adversarial
NVTabular is a feature engineering and preprocessing library for tabular data designed to quickly and easily manipulate terabyte scale datasets used to train deep learning based recommender systems.
NVTabular is a feature engineering and preprocessing library for tabular data designed to quickly and easily manipulate terabyte scale datasets used to train deep learning based recommender systems.
Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021
Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021 Abstract Recent works have made great success in semantic segmentation by explo
This repository contains the official implementation code of the paper Transformer-based Feature Reconstruction Network for Robust Multimodal Sentiment Analysis
This repository contains the official implementation code of the paper Transformer-based Feature Reconstruction Network for Robust Multimodal Sentiment Analysis, accepted at ACMMM 2021.
Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Neural Networks.
Dynamic-Graphs-Construction Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Ne
tsflex - feature-extraction benchmarking
tsflex - feature-extraction benchmarking This repository withholds the benchmark results and visualization code of the tsflex paper and toolkit. Flow
Source code of CIKM2021 Long Paper "PSSL: Self-supervised Learning for Personalized Search with Contrastive Sampling".
PSSL Source code of CIKM2021 Long Paper "PSSL: Self-supervised Learning for Personalized Search with Contrastive Sampling". It consists of the pre-tra
Code for DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning
DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning Pytorch Implementation for DisCo: Remedy Self-supervi
Official Pytorch implementation of "DivCo: Diverse Conditional Image Synthesis via Contrastive Generative Adversarial Network" (CVPR'21)
DivCo: Diverse Conditional Image Synthesis via Contrastive Generative Adversarial Network Pytorch implementation for our DivCo. We propose a simple ye
Official PyTorch implementation of "Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning" (ICCV2021 Oral)
MeTAL - Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning (ICCV2021 Oral) Sungyong Baik, Janghoon Choi, Heewon Kim, Dohee Cho, Jaes
Domain Generalization for Mammography Detection via Multi-style and Multi-view Contrastive Learning
MSVCL_MICCAI2021 Installation Please follow the instruction in pytorch-CycleGAN-and-pix2pix to install. Example Usage An example of vendor-styles tran
Kaggler is a Python package for lightweight online machine learning algorithms and utility functions for ETL and data analysis.
Kaggler is a Python package for lightweight online machine learning algorithms and utility functions for ETL and data analysis. It is distributed under the MIT License.
Feature-engine is a Python library with multiple transformers to engineer and select features for use in machine learning models.
Feature-engine is a Python library with multiple transformers to engineer and select features for use in machine learning models. Feature-engine's transformers follow scikit-learn's functionality with fit() and transform() methods to first learn the transforming parameters from data and then transform the data.
Open-source python package for the extraction of Radiomics features from 2D and 3D images and binary masks.
pyradiomics v3.0.1 Build Status Linux macOS Windows Radiomics feature extraction in Python This is an open-source python package for the extraction of
Python implementation of "Elliptic Fourier Features of a Closed Contour"
PyEFD An Python/NumPy implementation of a method for approximating a contour with a Fourier series, as described in [1]. Installation pip install pyef
A Guide for Feature Engineering and Feature Selection, with implementations and examples in Python.
Feature Engineering & Feature Selection A comprehensive guide [pdf] [markdown] for Feature Engineering and Feature Selection, with implementations and
stability-selection - A scikit-learn compatible implementation of stability selection
stability-selection - A scikit-learn compatible implementation of stability selection stability-selection is a Python implementation of the stability
A fast, flexible, and performant feature selection package for python.
linselect A fast, flexible, and performant feature selection package for python. Package in a nutshell It's built on stepwise linear regression When p
Implementation of the Chamfer Distance as a module for pyTorch
Chamfer Distance for pyTorch This is an implementation of the Chamfer Distance as a module for pyTorch. It is written as a custom C++/CUDA extension.
Complete-IoU (CIoU) Loss and Cluster-NMS for Object Detection and Instance Segmentation (YOLACT)
Complete-IoU Loss and Cluster-NMS for Improving Object Detection and Instance Segmentation. Our paper is accepted by IEEE Transactions on Cybernetics
An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models.
An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models. Hyperactive: is very easy to lear
Live training loss plot in Jupyter Notebook for Keras, PyTorch and others
livelossplot Don't train deep learning models blindfolded! Be impatient and look at each epoch of your training! (RECENT CHANGES, EXAMPLES IN COLAB, A
Bringing emacs' greatest feature to neovim - Tetris!
nvim-tetris Bringing emacs' greatest feature to neovim - Tetris! This plugin is written in Fennel using Olical's project Aniseed for creating the proj
Source code for our Paper "Learning in High-Dimensional Feature Spaces Using ANOVA-Based Matrix-Vector Multiplication"
NFFT4ANOVA Source code for our Paper "Learning in High-Dimensional Feature Spaces Using ANOVA-Based Matrix-Vector Multiplication" This package uses th
Official implementation for CVPR 2021 paper: Adaptive Class Suppression Loss for Long-Tail Object Detection
Adaptive Class Suppression Loss for Long-Tail Object Detection This repo is the official implementation for CVPR 2021 paper: Adaptive Class Suppressio
Confident Semantic Ranking Loss for Part Parsing
Confident Semantic Ranking Loss for Part Parsing
Predicting the usefulness of reviews given the review text and metadata surrounding the reviews.
Predicting Yelp Review Quality Table of Contents Introduction Motivation Goal and Central Questions The Data Data Storage and ETL EDA Data Pipeline Da
Automated Machine Learning Pipeline for tabular data. Designed for predictive maintenance applications, failure identification, failure prediction, condition monitoring, etc.
Automated Machine Learning Pipeline for tabular data. Designed for predictive maintenance applications, failure identification, failure prediction, condition monitoring, etc.
Video Corpus Moment Retrieval with Contrastive Learning (SIGIR 2021)
Video Corpus Moment Retrieval with Contrastive Learning PyTorch implementation for the paper "Video Corpus Moment Retrieval with Contrastive Learning"
Surrogate-Assisted Genetic Algorithm for Wrapper Feature Selection
SAGA Surrogate-Assisted Genetic Algorithm for Wrapper Feature Selection Please refer to the Jupyter notebook (Example.ipynb) for an example of using t
Pytorch implementation of the paper: "SAPNet: Segmentation-Aware Progressive Network for Perceptual Contrastive Image Deraining"
SAPNet This repository contains the official Pytorch implementation of the paper: "SAPNet: Segmentation-Aware Progressive Network for Perceptual Contr
Contrastive Learning for Metagenomic Binning
CLMB A simple framework for CLMB - a novel deep Contrastive Learningfor Metagenomic Binning Created by Pengfei Zhang, senior of Department of Computer