495 Repositories
Python cpu-gpu-transfer Libraries
This is a repository for a semantic segmentation inference API using the OpenVINO toolkit
BMW-IntelOpenVINO-Segmentation-Inference-API This is a repository for a semantic segmentation inference API using the OpenVINO toolkit. It's supported
Learn computer graphics by writing GPU shaders!
This repo contains a selection of projects designed to help you learn the basics of computer graphics. We'll be writing shaders to render interactive two-dimensional and three-dimensional scenes.
Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.
Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.
Neural style transfer as a class in PyTorch
pt-styletransfer Neural style transfer as a class in PyTorch Based on: https://github.com/alexis-jacq/Pytorch-Tutorials Adds: StyleTransferNet as a cl
[Open Source]. The improved version of AnimeGAN. Landscape photos/videos to anime
[Open Source]. The improved version of AnimeGAN. Landscape photos/videos to anime
Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch
Cross Transformers - Pytorch (wip) Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch Install $ pip install cross-t
Learning recognition/segmentation models without end-to-end training. 40%-60% less GPU memory footprint. Same training time. Better performance.
InfoPro-Pytorch The Information Propagation algorithm for training deep networks with local supervision. (ICLR 2021) Revisiting Locally Supervised Lea
STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech
STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech Keon Lee, Ky
Official code for the CVPR 2021 paper "How Well Do Self-Supervised Models Transfer?"
How Well Do Self-Supervised Models Transfer? This repository hosts the code for the experiments in the CVPR 2021 paper How Well Do Self-Supervised Mod
monolish: MONOlithic Liner equation Solvers for Highly-parallel architecture
monolish is a linear equation solver library that monolithically fuses variable data type, matrix structures, matrix data format, vendor specific data transfer APIs, and vendor specific numerical algebra libraries.
An open-source library of algorithms to analyse time series in GPU and CPU.
An open-source library of algorithms to analyse time series in GPU and CPU.
Official PyTorch implementation of "ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows"
ArtFlow Official PyTorch implementation of the paper: ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows Jie An*, Siyu Huang*, Yibing
Guide: Finetune GPT2-XL (1.5 Billion Parameters) and GPT-NEO (2.7 B) on a single 16 GB VRAM V100 Google Cloud instance with Huggingface Transformers using DeepSpeed
Guide: Finetune GPT2-XL (1.5 Billion Parameters) and GPT-NEO (2.7 Billion Parameters) on a single 16 GB VRAM V100 Google Cloud instance with Huggingfa
This code extends the neural style transfer image processing technique to video by generating smooth transitions between several reference style images
Neural Style Transfer Transition Video Processing By Brycen Westgarth and Tristan Jogminas Description This code extends the neural style transfer ima
A highly efficient and modular implementation of Gaussian Processes in PyTorch
GPyTorch GPyTorch is a Gaussian process library implemented using PyTorch. GPyTorch is designed for creating scalable, flexible, and modular Gaussian
Differentiable SDE solvers with GPU support and efficient sensitivity analysis.
PyTorch Implementation of Differentiable SDE Solvers This library provides stochastic differential equation (SDE) solvers with GPU support and efficie
Differentiable ODE solvers with full GPU support and O(1)-memory backpropagation.
PyTorch Implementation of Differentiable ODE Solvers This library provides ordinary differential equation (ODE) solvers implemented in PyTorch. Backpr
jupyter/ipython experiment containers for GPU and general RAM re-use
ipyexperiments jupyter/ipython experiment containers and utils for profiling and reclaiming GPU and general RAM, and detecting memory leaks. About Thi
Library for faster pinned CPU - GPU transfer in Pytorch
SpeedTorch Faster pinned CPU tensor - GPU Pytorch variabe transfer and GPU tensor - GPU Pytorch variable transfer, in certain cases. Update 9-29-1
A Python module for getting the GPU status from NVIDA GPUs using nvidia-smi programmically in Python
GPUtil GPUtil is a Python module for getting the GPU status from NVIDA GPUs using nvidia-smi. GPUtil locates all GPUs on the computer, determines thei
General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends). Blazing fast, mobile-enabled, asynchronous and optimized for advanced GPU data processing usecases.
Vulkan Kompute The general purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends). Blazing fast, mobile-enabl
BlazingSQL is a lightweight, GPU accelerated, SQL engine for Python. Built on RAPIDS cuDF.
A lightweight, GPU accelerated, SQL engine built on the RAPIDS.ai ecosystem. Get Started on app.blazingsql.com Getting Started | Documentation | Examp
cuML - RAPIDS Machine Learning Library
cuML - GPU Machine Learning Algorithms cuML is a suite of libraries that implement machine learning algorithms and mathematical primitives functions t
A GPU-accelerated library containing highly optimized building blocks and an execution engine for data processing to accelerate deep learning training and inference applications.
NVIDIA DALI The NVIDIA Data Loading Library (DALI) is a library for data loading and pre-processing to accelerate deep learning applications. It provi
Python 3 Bindings for NVML library. Get NVIDIA GPU status inside your program.
py3nvml Documentation also available at readthedocs. Python 3 compatible bindings to the NVIDIA Management Library. Can be used to query the state of
cuDF - GPU DataFrame Library
cuDF - GPU DataFrames NOTE: For the latest stable README.md ensure you are on the main branch. Resources cuDF Reference Documentation: Python API refe
Python interface to GPU-powered libraries
Package Description scikit-cuda provides Python interfaces to many of the functions in the CUDA device/runtime, CUBLAS, CUFFT, and CUSOLVER libraries
ArrayFire: a general purpose GPU library.
ArrayFire is a general-purpose library that simplifies the process of developing software that targets parallel and massively-parallel architectures i
CUDA integration for Python, plus shiny features
PyCUDA lets you access Nvidia's CUDA parallel computation API from Python. Several wrappers of the CUDA API already exist-so what's so special about P
📊 A simple command-line utility for querying and monitoring GPU status
gpustat Just less than nvidia-smi? NOTE: This works with NVIDIA Graphics Devices only, no AMD support as of now. Contributions are welcome! Self-Promo
A NumPy-compatible array library accelerated by CUDA
CuPy : A NumPy-compatible array library accelerated by CUDA Website | Docs | Install Guide | Tutorial | Examples | API Reference | Forum CuPy is an im
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective. 10x Larger Models 10x Faster Trainin
Time series forecasting with PyTorch
Our article on Towards Data Science introduces the package and provides background information. Pytorch Forecasting aims to ease state-of-the-art time
High-performance TensorFlow library for quantitative finance.
TF Quant Finance: TensorFlow based Quant Finance Library Table of contents Introduction Installation TensorFlow training Development roadmap Examples
Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization
Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization Official PyTorch implementation for our URST (Ultra-Resolution Sty
Tensorflow 2 Object Detection API kurulumu, GPU desteği, custom model hazırlama
Tensorflow 2 Object Detection API Bu tutorial, TensorFlow 2.x'in kararlı sürümü olan TensorFlow 2.3'ye yöneliktir. Bu, görüntülerde / videoda nesne a
a morph transfer UGATIT for image translation.
Morph-UGATIT a morph transfer UGATIT for image translation. Introduction 中文技术文档 This is Pytorch implementation of UGATIT, paper "U-GAT-IT: Unsupervise
A Genetic Programming platform for Python with TensorFlow for wicked-fast CPU and GPU support.
Karoo GP Karoo GP is an evolutionary algorithm, a genetic programming application suite written in Python which supports both symbolic regression and
A highly efficient and modular implementation of Gaussian Processes in PyTorch
GPyTorch GPyTorch is a Gaussian process library implemented using PyTorch. GPyTorch is designed for creating scalable, flexible, and modular Gaussian
cuDF - GPU DataFrame Library
cuDF - GPU DataFrames NOTE: For the latest stable README.md ensure you are on the main branch. Built based on the Apache Arrow columnar memory format,
Transfer Learning library for Deep Neural Networks.
Transfer and meta-learning in Python Each folder in this repository corresponds to a method or tool for transfer/meta-learning. xfer-ml is a standalon
ThunderGBM: Fast GBDTs and Random Forests on GPUs
Documentations | Installation | Parameters | Python (scikit-learn) interface What's new? ThunderGBM won 2019 Best Paper Award from IEEE Transactions o
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.
Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree
ThunderSVM: A Fast SVM Library on GPUs and CPUs
What's new We have recently released ThunderGBM, a fast GBDT and Random Forest library on GPUs. add scikit-learn interface, see here Overview The miss
50% faster, 50% less RAM Machine Learning. Numba rewritten Sklearn. SVD, NNMF, PCA, LinearReg, RidgeReg, Randomized, Truncated SVD/PCA, CSR Matrices all 50+% faster
[Due to the time taken @ uni, work + hell breaking loose in my life, since things have calmed down a bit, will continue commiting!!!] [By the way, I'm
cuML - RAPIDS Machine Learning Library
cuML - GPU Machine Learning Algorithms cuML is a suite of libraries that implement machine learning algorithms and mathematical primitives functions t
Lazy Profiler is a simple utility to collect CPU, GPU, RAM and GPU Memory stats while the program is running.
lazyprofiler Lazy Profiler is a simple utility to collect CPU, GPU, RAM and GPU Memory stats while the program is running. Installation Use the packag
Sandwich Batch Normalization
Sandwich Batch Normalization Code for Sandwich Batch Normalization. Introduction We present Sandwich Batch Normalization (SaBN), an extremely easy imp
Transfer SemanticKITTI labeles into other dataset/sensor formats.
LiDAR-Transfer Transfer SemanticKITTI labeles into other dataset/sensor formats. Content Convert datasets (NUSCENES, FORD, NCLT) to KITTI format Minim
NLP library designed for reproducible experimentation management
Welcome to the Transfer NLP library, a framework built on top of PyTorch to promote reproducible experimentation and Transfer Learning in NLP You can
Kashgari is a production-level NLP Transfer learning framework built on top of tf.keras for text-labeling and text-classification, includes Word2Vec, BERT, and GPT2 Language Embedding.
Kashgari Overview | Performance | Installation | Documentation | Contributing 🎉 🎉 🎉 We released the 2.0.0 version with TF2 Support. 🎉 🎉 🎉 If you
:house_with_garden: Fast & easy transfer learning for NLP. Harvesting language models for the industry. Focus on Question Answering.
(Framework for Adapting Representation Models) What is it? FARM makes Transfer Learning with BERT & Co simple, fast and enterprise-ready. It's built u
🛸 Use pretrained transformers like BERT, XLNet and GPT-2 in spaCy
spacy-transformers: Use pretrained transformers like BERT, XLNet and GPT-2 in spaCy This package provides spaCy components and architectures to use tr
Code for the paper "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer"
T5: Text-To-Text Transfer Transformer The t5 library serves primarily as code for reproducing the experiments in Exploring the Limits of Transfer Lear
:mag: End-to-End Framework for building natural language search interfaces to data by utilizing Transformers and the State-of-the-Art of NLP. Supporting DPR, Elasticsearch, HuggingFace’s Modelhub and much more!
Haystack is an end-to-end framework that enables you to build powerful and production-ready pipelines for different search use cases. Whether you want
DeepSpeech is an open source embedded (offline, on-device) speech-to-text engine which can run in real time on devices ranging from a Raspberry Pi 4 to high power GPU servers.
Project DeepSpeech DeepSpeech is an open-source Speech-To-Text engine, using a model trained by machine learning techniques based on Baidu's Deep Spee
Ivy is a templated deep learning framework which maximizes the portability of deep learning codebases.
Ivy is a templated deep learning framework which maximizes the portability of deep learning codebases. Ivy wraps the functional APIs of existing frameworks. Framework-agnostic functions, libraries and layers can then be written using Ivy, with simultaneous support for all frameworks. Ivy currently supports Jax, TensorFlow, PyTorch, MXNet and Numpy. Check out the docs for more info!
HTTP Request Smuggling Detection Tool
HTTP Request Smuggling Detection Tool HTTP request smuggling is a high severity vulnerability which is a technique where an attacker smuggles an ambig
CPU inference engine that delivers unprecedented performance for sparse models
The DeepSparse Engine is a CPU runtime that delivers unprecedented performance by taking advantage of natural sparsity within neural networks to reduce compute required as well as accelerate memory bound workloads. It is focused on model deployment and scaling machine learning pipelines, fitting seamlessly into your existing deployments as an inference backend.
NLP library designed for reproducible experimentation management
Welcome to the Transfer NLP library, a framework built on top of PyTorch to promote reproducible experimentation and Transfer Learning in NLP You can
Kashgari is a production-level NLP Transfer learning framework built on top of tf.keras for text-labeling and text-classification, includes Word2Vec, BERT, and GPT2 Language Embedding.
Kashgari Overview | Performance | Installation | Documentation | Contributing 🎉 🎉 🎉 We released the 2.0.0 version with TF2 Support. 🎉 🎉 🎉 If you
:house_with_garden: Fast & easy transfer learning for NLP. Harvesting language models for the industry. Focus on Question Answering.
(Framework for Adapting Representation Models) What is it? FARM makes Transfer Learning with BERT & Co simple, fast and enterprise-ready. It's built u
🛸 Use pretrained transformers like BERT, XLNet and GPT-2 in spaCy
spacy-transformers: Use pretrained transformers like BERT, XLNet and GPT-2 in spaCy This package provides spaCy components and architectures to use tr
Code for the paper "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer"
T5: Text-To-Text Transfer Transformer The t5 library serves primarily as code for reproducing the experiments in Exploring the Limits of Transfer Lear
:mag: Transformers at scale for question answering & neural search. Using NLP via a modular Retriever-Reader-Pipeline. Supporting DPR, Elasticsearch, HuggingFace's Modelhub...
Haystack is an end-to-end framework for Question Answering & Neural search that enables you to ... ... ask questions in natural language and find gran
ThunderGBM: Fast GBDTs and Random Forests on GPUs
Documentations | Installation | Parameters | Python (scikit-learn) interface What's new? ThunderGBM won 2019 Best Paper Award from IEEE Transactions o
ThunderSVM: A Fast SVM Library on GPUs and CPUs
What's new We have recently released ThunderGBM, a fast GBDT and Random Forest library on GPUs. add scikit-learn interface, see here Overview The miss
A flexible framework of neural networks for deep learning
Chainer: A deep learning framework Website | Docs | Install Guide | Tutorials (ja) | Examples (Official, External) | Concepts | ChainerX Forum (en, ja
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.
Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree
Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more
JAX: Autograd and XLA Quickstart | Transformations | Install guide | Neural net libraries | Change logs | Reference docs | Code search News: JAX tops
The fastai deep learning library
Welcome to fastai fastai simplifies training fast and accurate neural nets using modern best practices Important: This documentation covers fastai v2,
Tensors and Dynamic neural networks in Python with strong GPU acceleration
PyTorch is a Python package that provides two high-level features: Tensor computation (like NumPy) with strong GPU acceleration Deep neural networks b
Diamond is a python daemon that collects system metrics and publishes them to Graphite (and others). It is capable of collecting cpu, memory, network, i/o, load and disk metrics. Additionally, it features an API for implementing custom collectors for gathering metrics from almost any source.
Diamond Diamond is a python daemon that collects system metrics and publishes them to Graphite (and others). It is capable of collecting cpu, memory,
Scalene: a high-performance, high-precision CPU and memory profiler for Python
scalene: a high-performance CPU and memory profiler for Python by Emery Berger 中文版本 (Chinese version) About Scalene % pip install -U scalene Scalen
Visual profiler for Python
vprof vprof is a Python package providing rich and interactive visualizations for various Python program characteristics such as running time and memo
Yet Another Python Profiler, but this time thread&coroutine&greenlet aware.
Yappi Yet Another Python Profiler, but this time thread&coroutine&greenlet aware. Highlights Fast: Yappi is fast. It is completely written in C and lo
Cross-platform lib for process and system monitoring in Python
Home Install Documentation Download Forum Blog Funding What's new Summary psutil (process and system utilities) is a cross-platform library for retrie
Amazon S3 Transfer Manager for Python
s3transfer - An Amazon S3 Transfer Manager for Python S3transfer is a Python library for managing Amazon S3 transfers. Note This project is not curren
Neural style transfer in PyTorch.
style-transfer-pytorch An implementation of neural style transfer (A Neural Algorithm of Artistic Style) in PyTorch, supporting CPUs and Nvidia GPUs.
This is a repository for a No-Code object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operating systems.
OpenVINO Inference API This is a repository for an object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operati
data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer"
C2F-FWN data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer" (https://arxiv.org/abs/
[ICLR 2021] "Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective" by Wuyang Chen, Xinyu Gong, Zhangyang Wang
Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective [PDF] Wuyang Chen, Xinyu Gong, Zhangyang Wang In ICLR 2
Torchserve server using a YoloV5 model running on docker with GPU and static batch inference to perform production ready inference.
Yolov5 running on TorchServe (GPU compatible) ! This is a dockerfile to run TorchServe for Yolo v5 object detection model. (TorchServe (PyTorch librar
Python bindings for ArrayFire: A general purpose GPU library.
ArrayFire Python Bindings ArrayFire is a high performance library for parallel computing with an easy-to-use API. It enables users to write scientific
The fastai deep learning library
Welcome to fastai fastai simplifies training fast and accurate neural nets using modern best practices Important: This documentation covers fastai v2,
Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more
JAX: Autograd and XLA Quickstart | Transformations | Install guide | Neural net libraries | Change logs | Reference docs | Code search News: JAX tops
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.
Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree
Deep Learning GPU Training System
DIGITS DIGITS (the Deep Learning GPU Training System) is a webapp for training deep learning models. The currently supported frameworks are: Caffe, To
A flexible framework of neural networks for deep learning
Chainer: A deep learning framework Website | Docs | Install Guide | Tutorials (ja) | Examples (Official, External) | Concepts | ChainerX Forum (en, ja
GPU-Accelerated Deep Learning Library in Python
Hebel GPU-Accelerated Deep Learning Library in Python Hebel is a library for deep learning with neural networks in Python using GPU acceleration with
PyTorch implementation of neural style transfer algorithm
neural-style-pt This is a PyTorch implementation of the paper A Neural Algorithm of Artistic Style by Leon A. Gatys, Alexander S. Ecker, and Matthias
H2O is an Open Source, Distributed, Fast & Scalable Machine Learning Platform: Deep Learning, Gradient Boosting (GBM) & XGBoost, Random Forest, Generalized Linear Modeling (GLM with Elastic Net), K-Means, PCA, Generalized Additive Models (GAM), RuleFit, Support Vector Machine (SVM), Stacked Ensembles, Automatic Machine Learning (AutoML), etc.
H2O H2O is an in-memory platform for distributed, scalable machine learning. H2O uses familiar interfaces like R, Python, Scala, Java, JSON and the Fl
Cross-platform lib for process and system monitoring in Python
Home Install Documentation Download Forum Blog Funding What's new Summary psutil (process and system utilities) is a cross-platform library for retrie
Tensors and Dynamic neural networks in Python with strong GPU acceleration
PyTorch is a Python package that provides two high-level features: Tensor computation (like NumPy) with strong GPU acceleration Deep neural networks b
Visual profiler for Python
vprof vprof is a Python package providing rich and interactive visualizations for various Python program characteristics such as running time and memo