3762 Repositories
Python data-driven-model Libraries
Unofficial implementation of Google's FNet: Mixing Tokens with Fourier Transforms
FNet: Mixing Tokens with Fourier Transforms Pytorch implementation of Fnet : Mixing Tokens with Fourier Transforms. Citation: @misc{leethorp2021fnet,
[NAACL & ACL 2021] SapBERT: Self-alignment pretraining for BERT.
SapBERT: Self-alignment pretraining for BERT This repo holds code for the SapBERT model presented in our NAACL 2021 paper: Self-Alignment Pretraining
A DeepStack custom model for detecting common objects in dark/night images and videos.
DeepStack_ExDark This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API for d
Ever felt tired after preprocessing the dataset, and not wanting to write any code further to train your model? Ever encountered a situation where you wanted to record the hyperparameters of the trained model and able to retrieve it afterward? Models Playground is here to help you do that. Models playground allows you to train your models right from the browser.
Models Playground 🗂️ Upload a Preprocessed Dataset 🌠 Choose whether to perform Classification or Regression 🦹 Enter the Dependent Variable ?
A curated list of programmatic weak supervision papers and resources
A curated list of programmatic weak supervision papers and resources
Simple implementation of OpenAI CLIP model in PyTorch.
It was in January of 2021 that OpenAI announced two new models: DALL-E and CLIP, both multi-modality models connecting texts and images in some way. In this article we are going to implement CLIP model from scratch in PyTorch. OpenAI has open-sourced some of the code relating to CLIP model but I found it intimidating and it was far from something short and simple. I also came across a good tutorial inspired by CLIP model on Keras code examples and I translated some parts of it into PyTorch to build this tutorial totally with our beloved PyTorch!
Deep learning toolbox based on PyTorch for hyperspectral data classification.
Deep learning toolbox based on PyTorch for hyperspectral data classification.
Code & Data for Enhancing Photorealism Enhancement
Code & Data for Enhancing Photorealism Enhancement
A framework for cleaning Chinese dialog data
A framework for cleaning Chinese dialog data
Simple HTML and PDF document generator for Python - with built-in support for popular data analysis and plotting libraries.
Esparto is a simple HTML and PDF document generator for Python. Its primary use is for generating shareable single page reports with content from popular analytics and data science libraries.
Code for paper 'Audio-Driven Emotional Video Portraits'.
Audio-Driven Emotional Video Portraits [CVPR2021] Xinya Ji, Zhou Hang, Kaisiyuan Wang, Wayne Wu, Chen Change Loy, Xun Cao, Feng Xu [Project] [Paper] G
Implementation of Kaneko et al.'s MaskCycleGAN-VC model for non-parallel voice conversion.
MaskCycleGAN-VC Unofficial PyTorch implementation of Kaneko et al.'s MaskCycleGAN-VC (2021) for non-parallel voice conversion. MaskCycleGAN-VC is the
Simple but maybe too simple config management through python data classes. We use it for machine learning.
👩✈️ Coqpit Simple, light-weight and no dependency config handling through python data classes with to/from JSON serialization/deserialization. Curre
A fast Text-to-Speech (TTS) model. Work well for English, Mandarin/Chinese, Japanese, Korean, Russian and Tibetan (so far). 快速语音合成模型,适用于英语、普通话/中文、日语、韩语、俄语和藏语(当前已测试)。
简体中文 | English 并行语音合成 [TOC] 新进展 2021/04/20 合并 wavegan 分支到 main 主分支,删除 wavegan 分支! 2021/04/13 创建 encoder 分支用于开发语音风格迁移模块! 2021/04/13 softdtw 分支 支持使用 Sof
MILES is a multilingual text simplifier inspired by LSBert - A BERT-based lexical simplification approach proposed in 2018. Unlike LSBert, MILES uses the bert-base-multilingual-uncased model, as well as simple language-agnostic approaches to complex word identification (CWI) and candidate ranking.
MILES Multilingual Lexical Simplifier Explore the docs » Read LSBert Paper · Report Bug · Request Feature About The Project MILES is a multilingual te
This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation.
This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation.
Repository for XLM-T, a framework for evaluating multilingual language models on Twitter data
This is the XLM-T repository, which includes data, code and pre-trained multilingual language models for Twitter. XLM-T - A Multilingual Language Mode
Parrot is a paraphrase based utterance augmentation framework purpose built to accelerate training NLU models
Parrot is a paraphrase based utterance augmentation framework purpose built to accelerate training NLU models. A paraphrase framework is more than just a paraphrasing model.
Hue Editor: Open source SQL Query Assistant for Databases/Warehouses
Hue Editor: Open source SQL Query Assistant for Databases/Warehouses
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.
Amundsen is a metadata driven application for improving the productivity of data analysts, data scientists and engineers when interacting with data.
Amundsen is a metadata driven application for improving the productivity of data analysts, data scientists and engineers when interacting with data.
pytorch-kaldi is a project for developing state-of-the-art DNN/RNN hybrid speech recognition systems. The DNN part is managed by pytorch, while feature extraction, label computation, and decoding are performed with the kaldi toolkit.
The PyTorch-Kaldi Speech Recognition Toolkit PyTorch-Kaldi is an open-source repository for developing state-of-the-art DNN/HMM speech recognition sys
Integrating the Best of TF into PyTorch, for Machine Learning, Natural Language Processing, and Text Generation. This is part of the CASL project: http://casl-project.ai/
Texar-PyTorch is a toolkit aiming to support a broad set of machine learning, especially natural language processing and text generation tasks. Texar
Google AI 2018 BERT pytorch implementation
BERT-pytorch Pytorch implementation of Google AI's 2018 BERT, with simple annotation BERT 2018 BERT: Pre-training of Deep Bidirectional Transformers f
Data manipulation and transformation for audio signal processing, powered by PyTorch
torchaudio: an audio library for PyTorch The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the
Statsmodels: statistical modeling and econometrics in Python
About statsmodels statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics an
Ethereum ETL lets you convert blockchain data into convenient formats like CSVs and relational databases.
Python scripts for ETL (extract, transform and load) jobs for Ethereum blocks, transactions, ERC20 / ERC721 tokens, transfers, receipts, logs, contracts, internal transactions.
Store model history and view/revert changes from admin site.
django-simple-history django-simple-history stores Django model state on every create/update/delete. This app supports the following combinations of D
Ray provides a simple, universal API for building distributed applications.
An open source framework that provides a simple, universal API for building distributed applications. Ray is packaged with RLlib, a scalable reinforcement learning library, and Tune, a scalable hyperparameter tuning library.
Pydantic model support for Django ORM
Pydantic model support for Django ORM
erdantic is a simple tool for drawing entity relationship diagrams (ERDs) for Python data model classes
erdantic is a simple tool for drawing entity relationship diagrams (ERDs) for Python data model classes. Diagrams are rendered using the venerable Graphviz library.
Domain-driven e-commerce for Django
Domain-driven e-commerce for Django Oscar is an e-commerce framework for Django designed for building domain-driven sites. It is structured such that
AdaSpeech 2: Adaptive Text to Speech with Untranscribed Data
AdaSpeech 2: Adaptive Text to Speech with Untranscribed Data [WIP] Unofficial Pytorch implementation of AdaSpeech 2. Requirements : All code written i
RL and distillation in CARLA using a factorized world model
World on Rails Learning to drive from a world on rails Dian Chen, Vladlen Koltun, Philipp Krähenbühl, arXiv techical report (arXiv 2105.00636) This re
CLEAR algorithm for multi-view data association
CLEAR: Consistent Lifting, Embedding, and Alignment Rectification Algorithm The Matlab, Python, and C++ implementation of the CLEAR algorithm, as desc
Source codes for the paper "Local Additivity Based Data Augmentation for Semi-supervised NER"
LADA This repo contains codes for the following paper: Jiaao Chen*, Zhenghui Wang*, Ran Tian, Zichao Yang, Diyi Yang: Local Additivity Based Data Augm
Learning Representational Invariances for Data-Efficient Action Recognition
Learning Representational Invariances for Data-Efficient Action Recognition Official PyTorch implementation for Learning Representational Invariances
Django application and library for importing and exporting data with admin integration.
django-import-export django-import-export is a Django application and library for importing and exporting data with included admin integration. Featur
Packages of Example Data for The Effect
causaldata This repository will contain R, Stata, and Python packages, all called causaldata, which contain data sets that can be used to implement th
hyppo is an open-source software package for multivariate hypothesis testing.
hyppo (HYPothesis Testing in PythOn, pronounced "Hippo") is an open-source software package for multivariate hypothesis testing.
A command line tool for memorizing algorithms in Python by typing them.
Algo Drills A command line tool for memorizing algorithms in Python by typing them. In alpha and things will change. How it works Type out an algorith
TorchFlare is a simple, beginner-friendly, and easy-to-use PyTorch Framework train your models effortlessly.
TorchFlare TorchFlare is a simple, beginner-friendly and an easy-to-use PyTorch Framework train your models without much effort. It provides an almost
Official repo for the work titled "SharinGAN: Combining Synthetic and Real Data for Unsupervised GeometryEstimation"
SharinGAN Official repo for the work titled "SharinGAN: Combining Synthetic and Real Data for Unsupervised GeometryEstimation" The official project we
DiffQ performs differentiable quantization using pseudo quantization noise. It can automatically tune the number of bits used per weight or group of weights, in order to achieve a given trade-off between model size and accuracy.
Differentiable Model Compression via Pseudo Quantization Noise DiffQ performs differentiable quantization using pseudo quantization noise. It can auto
ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin et al., 2020).
ReConsider ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin
TorchShard is a lightweight engine for slicing a PyTorch tensor into parallel shards
TorchShard is a lightweight engine for slicing a PyTorch tensor into parallel shards. It can reduce GPU memory and scale up the training when the model has massive linear layers (e.g., ViT, BERT and GPT) or huge classes (millions). It has the same API design as PyTorch.
🤗 The largest hub of ready-to-use NLP datasets for ML models with fast, easy-to-use and efficient data manipulation tools
🤗 The largest hub of ready-to-use NLP datasets for ML models with fast, easy-to-use and efficient data manipulation tools
Research shows Google collects 20x more data from Android than Apple collects from iOS. Block this non-consensual telemetry using pihole blocklists.
pihole-antitelemetry Research shows Google collects 20x more data from Android than Apple collects from iOS. Block both using these pihole lists. Proj
Request execution of Galaxy SARS-CoV-2 variation analysis workflows on input data you provide.
SARS-CoV-2 processing requests Request execution of Galaxy SARS-CoV-2 variation analysis workflows on input data you provide. Prerequisites This autom
CLI and Streamlit applications to create APIs from Excel data files within seconds, using FastAPI
FastAPI-Wrapper CLI & APIness Streamlit App Arvindra Sehmi, Oxford Economics Ltd. | Website | LinkedIn (Updated: 21 April, 2021) fastapi-wrapper is mo
An official implementation for "CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip Retrieval"
The implementation of paper CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip Retrieval. CLIP4Clip is a video-text retrieval model based
Xarray backend to Copernicus Sentinel-1 satellite data products
xarray-sentinel WARNING: this product is a "technology preview" / pre-Alpha Xarray backend to explore and load Copernicus Sentinel-1 satellite data pr
A scikit-learn-compatible module for estimating prediction intervals.
|Anaconda|_ MAPIE - Model Agnostic Prediction Interval Estimator MAPIE allows you to easily estimate prediction intervals using your favourite sklearn
Code and data of the Fine-Grained R2R Dataset proposed in paper Sub-Instruction Aware Vision-and-Language Navigation
Fine-Grained R2R Code and data of the Fine-Grained R2R Dataset proposed in the EMNLP2020 paper Sub-Instruction Aware Vision-and-Language Navigation. C
PyTorch implementation of the end-to-end coreference resolution model with different higher-order inference methods.
End-to-End Coreference Resolution with Different Higher-Order Inference Methods This repository contains the implementation of the paper: Revealing th
🏅 The Most Comprehensive List of Kaggle Solutions and Ideas 🏅
🏅 Collection of Kaggle Solutions and Ideas 🏅
Coreference resolution for English, German and Polish, optimised for limited training data and easily extensible for further languages
Coreferee Author: Richard Paul Hudson, msg systems ag 1. Introduction 1.1 The basic idea 1.2 Getting started 1.2.1 English 1.2.2 German 1.2.3 Polish 1
stock data on eink with raspberry
small python skript to display tradegate data on a waveshare e-ink important you need locale "de_AT.UTF-8 UTF-8" installed. do so in raspi-config's Lo
Y. Zhang, Q. Yao, W. Dai, L. Chen. AutoSF: Searching Scoring Functions for Knowledge Graph Embedding. IEEE International Conference on Data Engineering (ICDE). 2020
AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:
TalkNet 2: Non-Autoregressive Depth-Wise Separable Convolutional Model for Speech Synthesis with Explicit Pitch and Duration Prediction.
TalkNet 2 [WIP] TalkNet 2: Non-Autoregressive Depth-Wise Separable Convolutional Model for Speech Synthesis with Explicit Pitch and Duration Predictio
mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms.
mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms. It provides easily interchangeable modeling and planning components, and a set of utility functions that allow writing model-based RL algorithms with only a few lines of code.
Focus on Algorithm Design, Not on Data Wrangling
The dataTap Python library is the primary interface for using dataTap's rich data management tools. Create datasets, stream annotations, and analyze model performance all with one library.
The repo contains the code of the ACL2020 paper `Dice Loss for Data-imbalanced NLP Tasks`
Dice Loss for NLP Tasks This repository contains code for Dice Loss for Data-imbalanced NLP Tasks at ACL2020. Setup Install Package Dependencies The c
Implementation for the paper SMPLicit: Topology-aware Generative Model for Clothed People (CVPR 2021)
SMPLicit: Topology-aware Generative Model for Clothed People [Project] [arXiv] License Software Copyright License for non-commercial scientific resear
skweak: A software toolkit for weak supervision applied to NLP tasks
Labelled data remains a scarce resource in many practical NLP scenarios. This is especially the case when working with resource-poor languages (or text domains), or when using task-specific labels without pre-existing datasets. The only available option is often to collect and annotate texts by hand, which is expensive and time-consuming.
Draw datasets from within Jupyter.
drawdata This small python app allows you to draw a dataset in a jupyter notebook. This should be very useful when teaching machine learning algorithm
Educational project on how to build an ETL (Extract, Transform, Load) data pipeline, orchestrated with Airflow.
ETL Pipeline with Airflow, Spark, s3, MongoDB and Amazon Redshift
[Preprint] Escaping the Big Data Paradigm with Compact Transformers, 2021
Compact Transformers Preprint Link: Escaping the Big Data Paradigm with Compact Transformers By Ali Hassani[1]*, Steven Walton[1]*, Nikhil Shah[1], Ab
Simple, light-weight config handling through python data classes with to/from JSON serialization/deserialization.
Simple but maybe too simple config management through python data classes. We use it for machine learning.
Source code for AAAI20 "Generating Persona Consistent Dialogues by Exploiting Natural Language Inference".
Generating Persona Consistent Dialogues by Exploiting Natural Language Inference Source code for RCDG model in AAAI20 Generating Persona Consistent Di
Sequence-to-sequence framework with a focus on Neural Machine Translation based on Apache MXNet
Sequence-to-sequence framework with a focus on Neural Machine Translation based on Apache MXNet
PyTorch implementation of neural style randomization for data augmentation
README Augment training images for deep neural networks by randomizing their visual style, as described in our paper: https://arxiv.org/abs/1809.05375
Gaphor is a UML and SysML modeling application written in Python.
Gaphor is a UML and SysML modeling application written in Python. It is designed to be easy to use, while still being powerful. Gaphor implements a fully-compliant UML 2 data model, so it is much more than a picture drawing tool. You can use Gaphor to quickly visualize different aspects of a system as well as create complete, highly complex models.
Diffgram - Supervised Learning Data Platform
Data Annotation, Data Labeling, Annotation Tooling, Training Data for Machine Learning
addon for blender to import mocap data from tools like easymocap, frankmocap and Vibe
b3d_mocap_import addon for blender to import mocap data from tools like easymocap, frankmocap and Vibe ==================VIBE================== To use
The Django Leaflet Admin List package provides an admin list view featured by the map and bounding box filter for the geo-based data of the GeoDjango.
The Django Leaflet Admin List package provides an admin list view featured by the map and bounding box filter for the geo-based data of the GeoDjango. It requires a django-leaflet package.
📼Command line tool based on youtube-dl to easily download selected channels from your subscriptions.
youtube-cdl Command line tool based on youtube-dl to easily download selected channels from your subscriptions. This tool is very handy if you want to
GLM (General Language Model)
GLM GLM is a General Language Model pretrained with an autoregressive blank-filling objective and can be finetuned on various natural language underst
Policy and data administration, distribution, and real-time updates on top of Open Policy Agent
⚡ OPAL ⚡ Open Policy Administration Layer OPAL is an administration layer for Open Policy Agent (OPA), detecting changes to both policy and policy dat
Visualize classified time series data with interactive Sankey plots in Google Earth Engine
sankee Visualize changes in classified time series data with interactive Sankey plots in Google Earth Engine Contents Description Installation Using P
Code related to "Have Your Text and Use It Too! End-to-End Neural Data-to-Text Generation with Semantic Fidelity" paper
DataTuner You have just found the DataTuner. This repository provides tools for fine-tuning language models for a task. See LICENSE.txt for license de
PyTorch3D is FAIR's library of reusable components for deep learning with 3D data
Introduction PyTorch3D provides efficient, reusable components for 3D Computer Vision research with PyTorch. Key features include: Data structure for
PyTorch module to use OpenFace's nn4.small2.v1.t7 model
OpenFace for Pytorch Disclaimer: This codes require the input face-images that are aligned and cropped in the same way of the original OpenFace. * I m
A Pythonic introduction to methods for scaling your data science and machine learning work to larger datasets and larger models, using the tools and APIs you know and love from the PyData stack (such as numpy, pandas, and scikit-learn).
This tutorial's purpose is to introduce Pythonistas to methods for scaling their data science and machine learning work to larger datasets and larger models, using the tools and APIs they know and love from the PyData stack (such as numpy, pandas, and scikit-learn).
DABO: Data Augmentation with Bilevel Optimization
DABO: Data Augmentation with Bilevel Optimization [Paper] The goal is to automatically learn an efficient data augmentation regime for image classific
Official PyTorch implementation of "IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos", CVPRW 2021
IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos Introduction This repo is official PyTorch implementatio
QA-GNN: Question Answering using Language Models and Knowledge Graphs
QA-GNN: Question Answering using Language Models and Knowledge Graphs This repo provides the source code & data of our paper: QA-GNN: Reasoning with L
Wetterdienst - Open weather data for humans
We are a group of like-minded people trying to make access to weather data in Python feel like a warm summer breeze, similar to other projects like rdwd for the R language, which originally drew our interest in this project.
U^2-Net - Portrait matting This repository explores possibilities of using the original u^2-net model for portrait matting.
U^2-Net - Portrait matting This repository explores possibilities of using the original u^2-net model for portrait matting.
I-BERT: Integer-only BERT Quantization
I-BERT: Integer-only BERT Quantization HuggingFace Implementation I-BERT is also available in the master branch of HuggingFace! Visit the following li
SC-GlowTTS: an Efficient Zero-Shot Multi-Speaker Text-To-Speech Model
SC-GlowTTS: an Efficient Zero-Shot Multi-Speaker Text-To-Speech Model Edresson Casanova, Christopher Shulby, Eren Gölge, Nicolas Michael Müller, Frede
Differentiable rasterization applied to 3D model simplification tasks
nvdiffmodeling Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Automatic 3D Model
Data Visualization Guide for Presentations, Reports, and Dashboards
This is a highly practical and example-based guide on visually representing data in reports and dashboards.
PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning
PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning Warning: This is a rapidly evolving research prototype.
Using deep actor-critic model to learn best strategies in pair trading
Deep-Reinforcement-Learning-in-Stock-Trading Using deep actor-critic model to learn best strategies in pair trading Abstract Partially observed Markov
A resource for learning about deep learning techniques from regression to LSTM and Reinforcement Learning using financial data and the fitness functions of algorithmic trading
A tour through tensorflow with financial data I present several models ranging in complexity from simple regression to LSTM and policy networks. The s
Algorithmic trading using machine learning.
Algorithmic Trading This machine learning algorithm was built using Python 3 and scikit-learn with a Decision Tree Classifier. The program gathers sto
Introducing neural networks to predict stock prices
IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o
Providing the solutions for high-frequency trading (HFT) strategies using data science approaches (Machine Learning) on Full Orderbook Tick Data.
Modeling High-Frequency Limit Order Book Dynamics Using Machine Learning Framework to capture the dynamics of high-frequency limit order books. Overvi
Using python and scikit-learn to make stock predictions
MachineLearningStocks in python: a starter project and guide EDIT as of Feb 2021: MachineLearningStocks is no longer actively maintained MachineLearni