3636 Repositories
Python data-efficient-gan-training Libraries
This repository is home to the Optimus data transformation plugins for various data processing needs.
Transformers Optimus's transformation plugins are implementations of Task and Hook interfaces that allows execution of arbitrary jobs in optimus. To i
Minimal Ethereum fee data viewer for the terminal, contained in a single python script.
Minimal Ethereum fee data viewer for the terminal, contained in a single python script. Connects to your node and displays some metrics in real-time.
This solution helps you deploy Data Lake Infrastructure on AWS using CDK Pipelines.
CDK Pipelines for Data Lake Infrastructure Deployment This solution helps you deploy data lake infrastructure on AWS using CDK Pipelines. This is base
Pytorch implementation of CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generation"
MUST-GAN Code | paper The Pytorch implementation of our CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generat
Google Project: Search and auto-complete sentences within given input text files, manipulating data with complex data-structures.
Auto-Complete Google Project In this project there is an implementation for one feature of Google's search engines - AutoComplete. Autocomplete, or wo
This repository contains data used in the NAACL 2021 Paper - Proteno: Text Normalization with Limited Data for Fast Deployment in Text to Speech Systems
Proteno This is the data release associated with the corresponding NAACL 2021 Paper - Proteno: Text Normalization with Limited Data for Fast Deploymen
ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge (ManiSkill Challenge), a large-scale learning-from-demonstrations benchmark for object manipulation.
ManiSkill-Learn ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge, a large-scale learning-from-dem
Data and Code for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning"
Introduction Code and data for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning". We cons
Code for the paper "TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks"
TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks This is a Python3 / Pytorch implementation of TadGAN paper. The associated
OpenGAN: Open-Set Recognition via Open Data Generation
OpenGAN: Open-Set Recognition via Open Data Generation ICCV 2021 (oral) Real-world machine learning systems need to analyze novel testing data that di
Implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training
SemCo The official pytorch implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training
Code release for our paper, "SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo"
SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo Thomas Kollar, Michael Laskey, Kevin Stone, Brijen Thananjeyan
A library for uncertainty representation and training in neural networks.
Epistemic Neural Networks A library for uncertainty representation and training in neural networks. Introduction Many applications in deep learning re
MODALS: Modality-agnostic Automated Data Augmentation in the Latent Space
Update (20 Jan 2020): MODALS on text data is avialable MODALS MODALS: Modality-agnostic Automated Data Augmentation in the Latent Space Table of Conte
Active and Sample-Efficient Model Evaluation
Active Testing: Sample-Efficient Model Evaluation Hi, good to see you here! 👋 This is code for "Active Testing: Sample-Efficient Model Evaluation". P
Extract Thailand COVID-19 Cluster data from daily briefing pdf.
Thailand COVID-19 Cluster Data Extraction About Extract Clusters from Thailand Daily COVID-19 briefing PDF Download latest data Here. Data will be upd
This demo showcase the use of onnxruntime-rs with a GPU on CUDA 11 to run Bert in a data pipeline with Rust.
Demo BERT ONNX pipeline written in rust This demo showcase the use of onnxruntime-rs with a GPU on CUDA 11 to run Bert in a data pipeline with Rust. R
Kunyu, more efficient corporate asset collection
Kunyu(坤舆) - More efficient corporate asset collection English | 中文文档 0x00 Introduce Tool introduction Kunyu (kunyu), whose name is taken from , is act
Unofficial PyTorch Implementation of UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation
UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation This is an unofficial PyTorch
Universal End2End Training Platform, including pre-training, classification tasks, machine translation, and etc.
背景 安装教程 快速上手 (一)预训练模型 (二)机器翻译 (三)文本分类 TenTrans 进阶 1. 多语言机器翻译 2. 跨语言预训练 背景 TrenTrans是一个统一的端到端的多语言多任务预训练平台,支持多种预训练方式,以及序列生成和自然语言理解任务。 安装教程 git clone git
Evidently helps analyze machine learning models during validation or production monitoring
Evidently helps analyze machine learning models during validation or production monitoring. The tool generates interactive visual reports and JSON profiles from pandas DataFrame or csv files. Currently 6 reports are available.
A collection of interactive machine-learning experiments: 🏋️models training + 🎨models demo
🤖 Interactive Machine Learning experiments: 🏋️models training + 🎨models demo
MASS: Masked Sequence to Sequence Pre-training for Language Generation
MASS: Masked Sequence to Sequence Pre-training for Language Generation
Collect super-resolution related papers, data, repositories
Collect super-resolution related papers, data, repositories
Use this script to track the gains of cryptocurrencies using historical data and display it on a super-imposed chart in order to find the highest performing cryptocurrencies historically
crypto-performance-tracker Use this script to track the gains of cryptocurrencies using historical data and display it on a super-imposed chart in ord
Automated data scraper for Thailand COVID-19 data
The Researcher COVID data Automated data scraper for Thailand COVID-19 data Accessing the Data 1st Dose Provincial Vaccination Data 2nd Dose Provincia
Image Deblurring using Generative Adversarial Networks
DeblurGAN arXiv Paper Version Pytorch implementation of the paper DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks. Our netwo
Random Erasing Data Augmentation. Experiments on CIFAR10, CIFAR100 and Fashion-MNIST
Random Erasing Data Augmentation =============================================================== black white random This code has the source code for
Synthesizing and manipulating 2048x1024 images with conditional GANs
pix2pixHD Project | Youtube | Paper Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic image-to-image translatio
In-Place Activated BatchNorm for Memory-Optimized Training of DNNs
In-Place Activated BatchNorm In-Place Activated BatchNorm for Memory-Optimized Training of DNNs In-Place Activated BatchNorm (InPlace-ABN) is a novel
An efficient PyTorch implementation of the winning entry of the 2017 VQA Challenge.
Bottom-Up and Top-Down Attention for Visual Question Answering An efficient PyTorch implementation of the winning entry of the 2017 VQA Challenge. The
PyTorch implementation of VAGAN: Visual Feature Attribution Using Wasserstein GANs
PyTorch implementation of VAGAN: Visual Feature Attribution Using Wasserstein GANs This code aims to reproduce results obtained in the paper "Visual F
PyTorch implementation of "Efficient Neural Architecture Search via Parameters Sharing"
Efficient Neural Architecture Search (ENAS) in PyTorch PyTorch implementation of Efficient Neural Architecture Search via Parameters Sharing. ENAS red
Proximal Backpropagation - a neural network training algorithm that takes implicit instead of explicit gradient steps
Proximal Backpropagation Proximal Backpropagation (ProxProp) is a neural network training algorithm that takes implicit instead of explicit gradient s
This repository contains the source code and data for reproducing results of Deep Continuous Clustering paper
Deep Continuous Clustering Introduction This is a Pytorch implementation of the DCC algorithms presented in the following paper (paper): Sohil Atul Sh
PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation.
PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation. Warning: the master branch might collapse. To ob
PyTorch implementations of Generative Adversarial Networks.
This repository has gone stale as I unfortunately do not have the time to maintain it anymore. If you would like to continue the development of it as
A pytorch implementation of Detectron. Both training from scratch and inferring directly from pretrained Detectron weights are available.
Use this instead: https://github.com/facebookresearch/maskrcnn-benchmark A Pytorch Implementation of Detectron Example output of e2e_mask_rcnn-R-101-F
A curated list of amazingly awesome Cybersecurity datasets
A curated list of amazingly awesome Cybersecurity datasets
A python application for manipulating pandas data frames from the comfort of your web browser
A python application for manipulating pandas data frames from the comfort of your web browser. Data flows are represented as a Directed Acyclic Graph, and nodes can be ran individually as the user sees fit.
Code release for "Self-Tuning for Data-Efficient Deep Learning" (ICML 2021)
Self-Tuning for Data-Efficient Deep Learning This repository contains the implementation code for paper: Self-Tuning for Data-Efficient Deep Learning
T2F: text to face generation using Deep Learning
⭐ [NEW] ⭐ T2F - 2.0 Teaser (coming soon ...) Please note that all the faces in the above samples are generated ones. The T2F 2.0 will be using MSG-GAN
Compute FID scores with PyTorch.
FID score for PyTorch This is a port of the official implementation of Fréchet Inception Distance to PyTorch. See https://github.com/bioinf-jku/TTUR f
Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks
Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks (SDPoint) This repository contains the cod
Code for paper "Which Training Methods for GANs do actually Converge? (ICML 2018)"
GAN stability This repository contains the experiments in the supplementary material for the paper Which Training Methods for GANs do actually Converg
Anomaly detection on SQL data warehouses and databases
With CueObserve, you can run anomaly detection on data in your SQL data warehouses and databases. Getting Started Install via Docker docker run -p 300
Official Implementation of LARGE: Latent-Based Regression through GAN Semantics
LARGE: Latent-Based Regression through GAN Semantics [Project Website] [Google Colab] [Paper] LARGE: Latent-Based Regression through GAN Semantics Yot
Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation", Haoxiang Wang, Han Zhao, Bo Li.
Bridging Multi-Task Learning and Meta-Learning Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Trainin
IDRLnet, a Python toolbox for modeling and solving problems through Physics-Informed Neural Network (PINN) systematically.
IDRLnet IDRLnet is a machine learning library on top of PyTorch. Use IDRLnet if you need a machine learning library that solves both forward and inver
Learned Token Pruning for Transformers
LTP: Learned Token Pruning for Transformers Check our paper for more details. Installation We follow the same installation procedure as the original H
[IJCAI-2021] A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation"
DataFree A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation" Authors: Gongfa
Deduplicating Training Data Makes Language Models Better
Deduplicating Training Data Makes Language Models Better This repository contains code to deduplicate language model datasets as descrbed in the paper
Reference implementation of code generation projects from Facebook AI Research. General toolkit to apply machine learning to code, from dataset creation to model training and evaluation. Comes with pretrained models.
This repository is a toolkit to do machine learning for programming languages. It implements tokenization, dataset preprocessing, model training and m
Code release for our paper, "SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo"
SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo Thomas Kollar, Michael Laskey, Kevin Stone, Brijen Thananjeyan
Implementation of the Triangle Multiplicative module, used in Alphafold2 as an efficient way to mix rows or columns of a 2d feature map, as a standalone package for Pytorch
Triangle Multiplicative Module - Pytorch Implementation of the Triangle Multiplicative module, used in Alphafold2 as an efficient way to mix rows or c
A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers.
ViTGAN: Training GANs with Vision Transformers A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers. Refer
Utility functions for working with data from Nix in Python
Pynixutil - Utility functions for working with data from Nix in Python Examples Base32 encoding/decoding import pynixutil input = "v5sv61sszx301i0x6x
Python package for machine learning for healthcare using a OMOP common data model
This library was developed in order to facilitate rapid prototyping in Python of predictive machine-learning models using longitudinal medical data from an OMOP CDM-standard database.
NeuralCompression is a Python repository dedicated to research of neural networks that compress data
NeuralCompression is a Python repository dedicated to research of neural networks that compress data. The repository includes tools such as JAX-based entropy coders, image compression models, video compression models, and metrics for image and video evaluation.
Rubrix is a free and open-source tool for exploring and iterating on data for artificial intelligence projects.
Open-source tool for exploring, labeling, and monitoring data for AI projects
Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)
Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)
A pytorch reproduction of { Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation }.
A PyTorch Reproduction of HCN Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation. Ch
Annotated, understandable, and visually interpretable PyTorch implementations of: VAE, BIRVAE, NSGAN, MMGAN, WGAN, WGANGP, LSGAN, DRAGAN, BEGAN, RaGAN, InfoGAN, fGAN, FisherGAN
Overview PyTorch 0.4.1 | Python 3.6.5 Annotated implementations with comparative introductions for minimax, non-saturating, wasserstein, wasserstein g
A certifiable defense against adversarial examples by training neural networks to be provably robust
DiffAI v3 DiffAI is a system for training neural networks to be provably robust and for proving that they are robust. The system was developed for the
DrQ-v2: Improved Data-Augmented Reinforcement Learning
DrQ-v2: Improved Data-Augmented RL Agent Method DrQ-v2 is a model-free off-policy algorithm for image-based continuous control. DrQ-v2 builds on DrQ,
Data exploration done quick.
Pandas Tab Implementation of Stata's tabulate command in Pandas for extremely easy to type one-way and two-way tabulations. Support: Python 3.7 and 3.
A library for generating fake data and populating database tables.
Knockoff Factory A library for generating mock data and creating database fixtures that can be used for unit testing. Table of content Installation Ch
Parallelformers: An Efficient Model Parallelization Toolkit for Deployment
Parallelformers: An Efficient Model Parallelization Toolkit for Deployment
A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019).
ClusterGCN ⠀⠀ A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019). A
Moving Object Segmentation in 3D LiDAR Data: A Learning-based Approach Exploiting Sequential Data
LiDAR-MOS: Moving Object Segmentation in 3D LiDAR Data This repo contains the code for our paper: Moving Object Segmentation in 3D LiDAR Data: A Learn
code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology"
GIANT Code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology" https://arxiv.org/pdf/2004.02118.pdf Please cite our paper if this pr
Self-training for Few-shot Transfer Across Extreme Task Differences
Self-training for Few-shot Transfer Across Extreme Task Differences (STARTUP) Introduction This repo contains the official implementation of the follo
The Power of Scale for Parameter-Efficient Prompt Tuning
The Power of Scale for Parameter-Efficient Prompt Tuning Implementation of soft embeddings from https://arxiv.org/abs/2104.08691v1 using Pytorch and H
PyTorch implementation of our Adam-NSCL algorithm from our CVPR2021 (oral) paper "Training Networks in Null Space for Continual Learning"
Adam-NSCL This is a PyTorch implementation of Adam-NSCL algorithm for continual learning from our CVPR2021 (oral) paper: Title: Training Networks in N
A new data augmentation method for extreme lighting conditions.
Random Shadows and Highlights This repo has the source code for the paper: Random Shadows and Highlights: A new data augmentation method for extreme l
EsViT: Efficient self-supervised Vision Transformers
Efficient Self-Supervised Vision Transformers (EsViT) PyTorch implementation for EsViT, built with two techniques: A multi-stage Transformer architect
StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking
StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking Datasets You can download datasets that have been pre-pr
Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness
Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness This repository contains the code used for the exper
Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference
RawVSR This repo contains the official codes for our paper: Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference Xiaoh
efficient neural audio synthesis in the waveform domain
neural waveshaping synthesis real-time neural audio synthesis in the waveform domain paper • website • colab • audio by Ben Hayes, Charalampos Saitis,
Official repository for the paper, MidiBERT-Piano: Large-scale Pre-training for Symbolic Music Understanding.
MidiBERT-Piano Authors: Yi-Hui (Sophia) Chou, I-Chun (Bronwin) Chen Introduction This is the official repository for the paper, MidiBERT-Piano: Large-
AlphaNet Improved Training of Supernet with Alpha-Divergence
AlphaNet: Improved Training of Supernet with Alpha-Divergence This repository contains our PyTorch training code, evaluation code and pretrained model
LiDAR R-CNN: An Efficient and Universal 3D Object Detector
LiDAR R-CNN: An Efficient and Universal 3D Object Detector Introduction This is the official code of LiDAR R-CNN: An Efficient and Universal 3D Object
ONNX Runtime for PyTorch accelerates PyTorch model training using ONNX Runtime.
Accelerate PyTorch models with ONNX Runtime
MachineLearningStocks is designed to be an intuitive and highly extensible template project applying machine learning to making stock predictions.
Using python and scikit-learn to make stock predictions
Решения, подсказки, тесты и утилиты для тренировки по алгоритмам от Яндекса.
Решения и подсказки к тренировке по алгоритмам от Яндекса Что есть внутри Решения с подсказками и комментариями; рекомендую сначала смотреть md файл п
The MLOps platform for innovators 🚀
DS2.ai is an integrated AI operation solution that supports all stages from custom AI development to deployment. It is an AI-specialized platform service that collects data, builds a training dataset through data labeling, and enables automatic development of artificial intelligence and easy deployment and operation.
Raganarok X: Next Generation Data Dump
Raganarok X Data Dump Raganarok X: Next Generation Data Dump More interesting Files File Name Contains en_langs All the variables you need in English
A Python library for reading, writing and visualizing the OMEGA Format
A Python library for reading, writing and visualizing the OMEGA Format, targeted towards storing reference and perception data in the automotive context on an object list basis with a focus on an urban use case.
Squidpy is a tool for the analysis and visualization of spatial molecular data.
Squidpy is a tool for the analysis and visualization of spatial molecular data. It builds on top of scanpy and anndata, from which it inherits modularity and scalability. It provides analysis tools that leverages the spatial coordinates of the data, as well as tissue images if available.
S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural Networks via Guided Distribution Calibration (CVPR 2021)
S2-BNN (Self-supervised Binary Neural Networks Using Distillation Loss) This is the official pytorch implementation of our paper: "S2-BNN: Bridging th
Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow.
Generative Models Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow. Also present here are RBM and Helmholtz Machine. Note: Gen
A community run, 5-day PyTorch Deep Learning Bootcamp
Deep Learning Winter School, November 2107. Tel Aviv Deep Learning Bootcamp : http://deep-ml.com. About Tel-Aviv Deep Learning Bootcamp is an intensiv
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks
Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka
The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dealing with medical images.
The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dealing with medical images.
🛠 All-in-one web-based IDE specialized for machine learning and data science.
All-in-one web-based development environment for machine learning Getting Started • Features & Screenshots • Support • Report a Bug • FAQ • Known Issu
HyperPose is a library for building high-performance custom pose estimation applications.
HyperPose is a library for building high-performance custom pose estimation applications.
XGBoost-Ray is a distributed backend for XGBoost, built on top of distributed computing framework Ray.
XGBoost-Ray is a distributed backend for XGBoost, built on top of distributed computing framework Ray.
A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.
A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.
This is the unofficial code of Deep Dual-resolution Networks for Real-time and Accurate Semantic Segmentation of Road Scenes. which achieve state-of-the-art trade-off between accuracy and speed on cityscapes and camvid, without using inference acceleration and extra data
Deep Dual-resolution Networks for Real-time and Accurate Semantic Segmentation of Road Scenes Introduction This is the unofficial code of Deep Dual-re