3427 Repositories
Python deep-convolutional-networks Libraries
Toward Realistic Single-View 3D Object Reconstruction with Unsupervised Learning from Multiple Images (ICCV 2021)
Table of Content Introduction Getting Started Datasets Installation Experiments Training & Testing Pretrained models Texture fine-tuning Demo Toward R
A curated (most recent) list of resources for Learning with Noisy Labels
A curated (most recent) list of resources for Learning with Noisy Labels
This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their coordinates and detected labels.
This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their
A PyTorch implementation of SlowFast based on ICCV 2019 paper "SlowFast Networks for Video Recognition"
SlowFast A PyTorch implementation of SlowFast based on ICCV 2019 paper SlowFast Networks for Video Recognition. Requirements Anaconda PyTorch conda in
Deep Face Recognition in PyTorch
Face Recognition in PyTorch By Alexey Gruzdev and Vladislav Sovrasov Introduction A repository for different experimental Face Recognition models such
a reimplementation of Optical Flow Estimation using a Spatial Pyramid Network in PyTorch
pytorch-spynet This is a personal reimplementation of SPyNet [1] using PyTorch. Should you be making use of this work, please cite the paper according
GANimation: Anatomically-aware Facial Animation from a Single Image (ECCV'18 Oral) [PyTorch]
GANimation: Anatomically-aware Facial Animation from a Single Image [Project] [Paper] Official implementation of GANimation. In this work we introduce
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥
face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa
Differentiable architecture search for convolutional and recurrent networks
Differentiable Architecture Search Code accompanying the paper DARTS: Differentiable Architecture Search Hanxiao Liu, Karen Simonyan, Yiming Yang. arX
PyTorch code accompanying our paper on Maximum Entropy Generators for Energy-Based Models
Maximum Entropy Generators for Energy-Based Models All experiments have tensorboard visualizations for samples / density / train curves etc. To run th
Learning Confidence for Out-of-Distribution Detection in Neural Networks
Learning Confidence Estimates for Neural Networks This repository contains the code for the paper Learning Confidence for Out-of-Distribution Detectio
Pytorch implementation for "Large-Scale Long-Tailed Recognition in an Open World" (CVPR 2019 ORAL)
Large-Scale Long-Tailed Recognition in an Open World [Project] [Paper] [Blog] Overview Open Long-Tailed Recognition (OLTR) is the author's re-implemen
Deep Anomaly Detection with Outlier Exposure (ICLR 2019)
Outlier Exposure This repository contains the essential code for the paper Deep Anomaly Detection with Outlier Exposure (ICLR 2019). Requires Python 3
Distributionally robust neural networks for group shifts
Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization This code implements the g
NEATEST: Evolving Neural Networks Through Augmenting Topologies with Evolution Strategy Training
NEATEST: Evolving Neural Networks Through Augmenting Topologies with Evolution Strategy Training
An inofficial PyTorch implementation of PREDATOR based on KPConv.
PREDATOR: Registration of 3D Point Clouds with Low Overlap An inofficial PyTorch implementation of PREDATOR based on KPConv. The code has been tested
Official PyTorch implementation of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image", ICCV 2019
PoseNet of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image" Introduction This repo is official Py
simple generative adversarial network (GAN) using PyTorch
Generative Adversarial Networks (GANs) in PyTorch Running Run the sample code by typing: ./gan_pytorch.py ...and you'll train two nets to battle it o
Some example scripts on pytorch
pytorch-practice Some example scripts on pytorch CONLL 2000 Chunking task Uses BiLSTM CRF loss with char CNN embeddings. To run use: cd data/conll2000
A scalable template for PyTorch projects, with examples in Image Segmentation, Object classification, GANs and Reinforcement Learning.
PyTorch Project Template is being sponsored by the following tool; please help to support us by taking a look and signing up to a free trial PyTorch P
PyTorch tutorials and best practices.
Effective PyTorch Table of Contents Part I: PyTorch Fundamentals PyTorch basics Encapsulate your model with Modules Broadcasting the good and the ugly
Pytorch implementations of various Deep NLP models in cs-224n(Stanford Univ)
DeepNLP-models-Pytorch Pytorch implementations of various Deep NLP models in cs-224n(Stanford Univ: NLP with Deep Learning) This is not for Pytorch be
PyTorch Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)
pytorch-fcn PyTorch implementation of Fully Convolutional Networks. Requirements pytorch = 0.2.0 torchvision = 0.1.8 fcn = 6.1.5 Pillow scipy tqdm
PyTorch Tutorial for Deep Learning Researchers
This repository provides tutorial code for deep learning researchers to learn PyTorch. In the tutorial, most of the models were implemented with less
An IPython Notebook tutorial on deep learning for natural language processing, including structure prediction.
Table of Contents: Introduction to Torch's Tensor Library Computation Graphs and Automatic Differentiation Deep Learning Building Blocks: Affine maps,
Minimal tutorials for PyTorch
Minimal tutorials for PyTorch adapted from Alec Radford's Theano tutorials. Tensor multiplication Linear Regression Logistic Regression Neural Network
C++ Implementation of PyTorch Tutorials for Everyone
C++ Implementation of PyTorch Tutorials for Everyone OS (Compiler)\LibTorch 1.9.0 macOS (clang 10.0, 11.0, 12.0) Linux (gcc 8, 9, 10, 11) Windows (msv
A collection of various deep learning architectures, models, and tips
Deep Learning Models A collection of various deep learning architectures, models, and tips for TensorFlow and PyTorch in Jupyter Notebooks. Traditiona
Open source guides/codes for mastering deep learning to deploying deep learning in production in PyTorch, Python, C++ and more.
Deep Learning Materials by Deep Learning Wizard Start Learning Now Please head to www.deeplearningwizard.com to start learning! It is mobile/tablet fr
Deep Learning (with PyTorch)
Deep Learning (with PyTorch) This notebook repository now has a companion website, where all the course material can be found in video and textual for
Interactive deep learning book with multi-framework code, math, and discussions. Adopted at 200 universities.
D2L.ai: Interactive Deep Learning Book with Multi-Framework Code, Math, and Discussions Book website | STAT 157 Course at UC Berkeley | Latest version
Visualizer for neural network, deep learning, and machine learning models
Netron is a viewer for neural network, deep learning and machine learning models. Netron supports ONNX, TensorFlow Lite, Keras, Caffe, Darknet, ncnn,
Using / reproducing ACD from the paper "Hierarchical interpretations for neural network predictions" 🧠 (ICLR 2019)
Hierarchical neural-net interpretations (ACD) 🧠 Produces hierarchical interpretations for a single prediction made by a pytorch neural network. Offic
Making decision trees competitive with neural networks on CIFAR10, CIFAR100, TinyImagenet200, Imagenet
Neural-Backed Decision Trees · Site · Paper · Blog · Video Alvin Wan, *Lisa Dunlap, *Daniel Ho, Jihan Yin, Scott Lee, Henry Jin, Suzanne Petryk, Sarah
Quickly and easily create / train a custom DeepDream model
Dream-Creator This project aims to simplify the process of creating a custom DeepDream model by using pretrained GoogleNet models and custom image dat
Visualization toolkit for neural networks in PyTorch! Demo --
FlashTorch A Python visualization toolkit, built with PyTorch, for neural networks in PyTorch. Neural networks are often described as "black box". The
PyTorch implementation of DeepDream algorithm
neural-dream This is a PyTorch implementation of DeepDream. The code is based on neural-style-pt. Here we DeepDream a photograph of the Golden Gate Br
Pytorch implementation of convolutional neural network visualization techniques
Convolutional Neural Network Visualizations This repository contains a number of convolutional neural network visualization techniques implemented in
Many Class Activation Map methods implemented in Pytorch for CNNs and Vision Transformers. Including Grad-CAM, Grad-CAM++, Score-CAM, Ablation-CAM and XGrad-CAM
Class Activation Map methods implemented in Pytorch pip install grad-cam ⭐ Comprehensive collection of Pixel Attribution methods for Computer Vision.
Implementation of the Remixer Block from the Remixer paper, in Pytorch
Remixer - Pytorch Implementation of the Remixer Block from the Remixer paper, in Pytorch. It claims that substituting the feedforwards in transformers
A simple but complete full-attention transformer with a set of promising experimental features from various papers
x-transformers A concise but fully-featured transformer, complete with a set of promising experimental features from various papers. Install $ pip ins
[MICCAI'20] AlignShift: Bridging the Gap of Imaging Thickness in 3D Anisotropic Volumes
AlignShift NEW: Code for our new MICCAI'21 paper "Asymmetric 3D Context Fusion for Universal Lesion Detection" will also be pushed to this repository
Python implementation of a live deep learning based age/gender/expression recognizer
TUT live age estimator Python implementation of a live deep learning based age/gender/smile/celebrity twin recognizer. All components use convolutiona
A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualization
Website, Tutorials, and Docs Uncertainty Toolbox A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualizatio
Muzic: Music Understanding and Generation with Artificial Intelligence
Muzic is a research project on AI music that empowers music understanding and generation with deep learning and artificial intelligence.
A Non-Autoregressive Transformer based TTS, supporting a family of SOTA transformers with supervised and unsupervised duration modelings. This project grows with the research community, aiming to achieve the ultimate TTS.
A Non-Autoregressive Transformer based TTS, supporting a family of SOTA transformers with supervised and unsupervised duration modelings. This project grows with the research community, aiming to achieve the ultimate TTS.
Lingvo is a framework for building neural networks in Tensorflow, particularly sequence models.
Lingvo is a framework for building neural networks in Tensorflow, particularly sequence models.
Scripts for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation and a convolutional neural network (CNN) for image classification
About subwAI subwAI - a project for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation
PyTorch Implementation of [1611.06440] Pruning Convolutional Neural Networks for Resource Efficient Inference
PyTorch implementation of [1611.06440 Pruning Convolutional Neural Networks for Resource Efficient Inference] This demonstrates pruning a VGG16 based
Official implementations of EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis.
EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis This repo contains the official implementations of EigenDamage: Structured Prunin
Code for paper "Energy-Constrained Compression for Deep Neural Networks via Weighted Sparse Projection and Layer Input Masking"
model_based_energy_constrained_compression Code for paper "Energy-Constrained Compression for Deep Neural Networks via Weighted Sparse Projection and
Learning Sparse Neural Networks through L0 regularization
Example implementation of the L0 regularization method described at Learning Sparse Neural Networks through L0 regularization, Christos Louizos, Max W
Distiller is an open-source Python package for neural network compression research.
Wiki and tutorials | Documentation | Getting Started | Algorithms | Design | FAQ Distiller is an open-source Python package for neural network compres
A tutorial on "Bayesian Compression for Deep Learning" published at NIPS (2017).
Code release for "Bayesian Compression for Deep Learning" In "Bayesian Compression for Deep Learning" we adopt a Bayesian view for the compression of
Tutorial for surrogate gradient learning in spiking neural networks
SpyTorch A tutorial on surrogate gradient learning in spiking neural networks Version: 0.4 This repository contains tutorial files to get you started
A PyTorch implementation of Learning to learn by gradient descent by gradient descent
Intro PyTorch implementation of Learning to learn by gradient descent by gradient descent. Run python main.py TODO Initial implementation Toy data LST
OptNet: Differentiable Optimization as a Layer in Neural Networks
OptNet: Differentiable Optimization as a Layer in Neural Networks This repository is by Brandon Amos and J. Zico Kolter and contains the PyTorch sourc
docTR by Mindee (Document Text Recognition) - a seamless, high-performing & accessible library for OCR-related tasks powered by Deep Learning.
docTR by Mindee (Document Text Recognition) - a seamless, high-performing & accessible library for OCR-related tasks powered by Deep Learning.
BMInf (Big Model Inference) is a low-resource inference package for large-scale pretrained language models (PLMs).
BMInf (Big Model Inference) is a low-resource inference package for large-scale pretrained language models (PLMs).
TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"
TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"
Bunch of optimizer implementations in PyTorch
Bunch of optimizer implementations in PyTorch
Dense Deep Unfolding Network with 3D-CNN Prior for Snapshot Compressive Imaging, ICCV2021 [PyTorch Code]
Dense Deep Unfolding Network with 3D-CNN Prior for Snapshot Compressive Imaging, ICCV2021 [PyTorch Code]
The VeriNet toolkit for verification of neural networks
VeriNet The VeriNet toolkit is a state-of-the-art sound and complete symbolic interval propagation based toolkit for verification of neural networks.
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".
RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo
GPU-accelerated PyTorch implementation of Zero-shot User Intent Detection via Capsule Neural Networks
GPU-accelerated PyTorch implementation of Zero-shot User Intent Detection via Capsule Neural Networks This repository implements a capsule model Inten
A Pytorch implementation of "Splitter: Learning Node Representations that Capture Multiple Social Contexts" (WWW 2019).
Splitter ⠀⠀ A PyTorch implementation of Splitter: Learning Node Representations that Capture Multiple Social Contexts (WWW 2019). Abstract Recent inte
[ICLR'19] Trellis Networks for Sequence Modeling
TrellisNet for Sequence Modeling This repository contains the experiments done in paper Trellis Networks for Sequence Modeling by Shaojie Bai, J. Zico
PyTorch Language Model for 1-Billion Word (LM1B / GBW) Dataset
PyTorch Large-Scale Language Model A Large-Scale PyTorch Language Model trained on the 1-Billion Word (LM1B) / (GBW) dataset Latest Results 39.98 Perp
Pervasive Attention: 2D Convolutional Networks for Sequence-to-Sequence Prediction
This is a fork of Fairseq(-py) with implementations of the following models: Pervasive Attention - 2D Convolutional Neural Networks for Sequence-to-Se
A Structured Self-attentive Sentence Embedding
Structured Self-attentive sentence embeddings Implementation for the paper A Structured Self-Attentive Sentence Embedding, which was published in ICLR
Convolutional 2D Knowledge Graph Embeddings resources
ConvE Convolutional 2D Knowledge Graph Embeddings resources. Paper: Convolutional 2D Knowledge Graph Embeddings Used in the paper, but do not use thes
PyTorch implementation of convolutional neural networks-based text-to-speech synthesis models
Deepvoice3_pytorch PyTorch implementation of convolutional networks-based text-to-speech synthesis models: arXiv:1710.07654: Deep Voice 3: Scaling Tex
Sequence modeling benchmarks and temporal convolutional networks
Sequence Modeling Benchmarks and Temporal Convolutional Networks (TCN) This repository contains the experiments done in the work An Empirical Evaluati
Wind Speed Prediction using LSTMs in PyTorch
Implementation of Deep-Forecast using PyTorch Deep Forecast: Deep Learning-based Spatio-Temporal Forecasting Adapted from original implementation Setu
An implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional Neural Network"
Retina Blood Vessels Segmentation This is an implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional
Tevatron is a simple and efficient toolkit for training and running dense retrievers with deep language models.
Tevatron Tevatron is a simple and efficient toolkit for training and running dense retrievers with deep language models. The toolkit has a modularized
High level network definitions with pre-trained weights in TensorFlow
TensorNets High level network definitions with pre-trained weights in TensorFlow (tested with 2.1.0 = TF = 1.4.0). Guiding principles Applicability.
Search and filter videos based on objects that appear in them using convolutional neural networks
Thingscoop: Utility for searching and filtering videos based on their content Description Thingscoop is a command-line utility for analyzing videos se
Tensorforce: a TensorFlow library for applied reinforcement learning
Tensorforce: a TensorFlow library for applied reinforcement learning Introduction Tensorforce is an open-source deep reinforcement learning framework,
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥
TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens
Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning
Human-Level Control through Deep Reinforcement Learning Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning. This imp
Train a deep learning net with OpenStreetMap features and satellite imagery.
DeepOSM Classify roads and features in satellite imagery, by training neural networks with OpenStreetMap (OSM) data. DeepOSM can: Download a chunk of
Pretty Tensor - Fluent Neural Networks in TensorFlow
Pretty Tensor provides a high level builder API for TensorFlow. It provides thin wrappers on Tensors so that you can easily build multi-layer neural networks.
A best practice for tensorflow project template architecture.
A best practice for tensorflow project template architecture.
SenseNet is a sensorimotor and touch simulator for deep reinforcement learning research
SenseNet is a sensorimotor and touch simulator for deep reinforcement learning research
Sequence-to-Sequence learning using PyTorch
Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train
A PyTorch implementation of the Transformer model in "Attention is All You Need".
Attention is all you need: A Pytorch Implementation This is a PyTorch implementation of the Transformer model in "Attention is All You Need" (Ashish V
DeepLab resnet v2 model in pytorch
pytorch-deeplab-resnet DeepLab resnet v2 model implementation in pytorch. The architecture of deepLab-ResNet has been replicated exactly as it is from
Neural Style and MSG-Net
PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included
Pytorch implementation of Value Iteration Networks (NIPS 2016 best paper)
VIN: Value Iteration Networks A quick thank you A few others have released amazing related work which helped inspire and improve my own implementation
PyTorch implementation of Advantage async actor-critic Algorithms (A3C) in PyTorch
Advantage async actor-critic Algorithms (A3C) in PyTorch @inproceedings{mnih2016asynchronous, title={Asynchronous methods for deep reinforcement lea
Image-to-Image Translation in PyTorch
CycleGAN and pix2pix in PyTorch New: Please check out contrastive-unpaired-translation (CUT), our new unpaired image-to-image translation model that e
LeafSnap replicated using deep neural networks to test accuracy compared to traditional computer vision methods.
Deep-Leafsnap Convolutional Neural Networks have become largely popular in image tasks such as image classification recently largely due to to Krizhev
Deep Reinforcement Learning with pytorch & visdom
Deep Reinforcement Learning with pytorch & visdom Sample testings of trained agents (DQN on Breakout, A3C on Pong, DoubleDQN on CartPole, continuous A
Code for the paper "Adversarial Generator-Encoder Networks"
This repository contains code for the paper "Adversarial Generator-Encoder Networks" (AAAI'18) by Dmitry Ulyanov, Andrea Vedaldi, Victor Lempitsky. Pr
Tree LSTM implementation in PyTorch
Tree-Structured Long Short-Term Memory Networks This is a PyTorch implementation of Tree-LSTM as described in the paper Improved Semantic Representati
PyTorch implementation of Deformable Convolution
PyTorch implementation of Deformable Convolution !!!Warning: There is some issues in this implementation and this repo is not maintained any more, ple
A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks
SVHNClassifier-PyTorch A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks If
Improving Convolutional Networks via Attention Transfer (ICLR 2017)
Attention Transfer PyTorch code for "Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Tran
PyTorch implementation of Value Iteration Networks (VIN): Clean, Simple and Modular. Visualization in Visdom.
VIN: Value Iteration Networks This is an implementation of Value Iteration Networks (VIN) in PyTorch to reproduce the results.(TensorFlow version) Key