3967 Repositories
Python deep-nlp-models Libraries
Denoising Diffusion Implicit Models
Denoising Diffusion Implicit Models (DDIM) Jiaming Song, Chenlin Meng and Stefano Ermon, Stanford Implements sampling from an implicit model that is t
Diffusion Probabilistic Models for 3D Point Cloud Generation (CVPR 2021)
Diffusion Probabilistic Models for 3D Point Cloud Generation [Paper] [Code] The official code repository for our CVPR 2021 paper "Diffusion Probabilis
Jax/Flax implementation of Variational-DiffWave.
jax-variational-diffwave Jax/Flax implementation of Variational-DiffWave. (Zhifeng Kong et al., 2020, Diederik P. Kingma et al., 2021.) DiffWave with
PyTorch toolkit for biomedical imaging
farabio is a minimal PyTorch toolkit for out-of-the-box deep learning support in biomedical imaging. For further information, see Wikis and Docs.
A collection of resources and papers on Diffusion Models, a darkhorse in the field of Generative Models
This repository contains a collection of resources and papers on Diffusion Models and Score-based Models. If there are any missing valuable resources
Neural HMMs are all you need (for high-quality attention-free TTS)
Neural HMMs are all you need (for high-quality attention-free TTS) Shivam Mehta, Éva Székely, Jonas Beskow, and Gustav Eje Henter This is the official
Rainbow DQN implementation accompanying the paper "Fast and Data-Efficient Training of Rainbow" which reaches 205.7 median HNS after 10M frames. 🌈
Rainbow 🌈 An implementation of Rainbow DQN which reaches a median HNS of 205.7 after only 10M frames (the original Rainbow from Hessel et al. 2017 re
Automatic learning-rate scheduler
AutoLRS This is the PyTorch code implementation for the paper AutoLRS: Automatic Learning-Rate Schedule by Bayesian Optimization on the Fly published
The project page of paper: Architecture disentanglement for deep neural networks [ICCV 2021, oral]
This is the project page for the paper: Architecture Disentanglement for Deep Neural Networks, Jie Hu, Liujuan Cao, Tong Tong, Ye Qixiang, ShengChuan
Quick program made to generate alpha and delta tables for Hidden Markov Models
HMM_Calc Functions for generating Alpha and Delta tables from a Hidden Markov Model. Parameters: a: Matrix of transition probabilities. a[i][j] = a_{i
Deploying a Text Summarization NLP use case on Docker Container Utilizing Nvidia GPU
GPU Docker NLP Application Deployment Deploying a Text Summarization NLP use case on Docker Container Utilizing Nvidia GPU, to setup the enviroment on
Joint Detection and Identification Feature Learning for Person Search
Person Search Project This repository hosts the code for our paper Joint Detection and Identification Feature Learning for Person Search. The code is
torchbearer: A model fitting library for PyTorch
Note: We're moving to PyTorch Lightning! Read about the move here. From the end of February, torchbearer will no longer be actively maintained. We'll
PyTorch implementation of the Pose Residual Network (PRN)
Pose Residual Network This repository contains a PyTorch implementation of the Pose Residual Network (PRN) presented in our ECCV 2018 paper: Muhammed
A project to make Amazon Echo respond to sign language using your webcam
Making Alexa respond to Sign Language using Tensorflow.js Try the live demo Read the Blog Post on Tensorflow's Blog Coming Soon Watch the video This p
Natural Language Processing Tasks and Examples.
Natural Language Processing Tasks and Examples With the advancement of A.I. technology in recent years, natural language processing technology has bee
Grow Function: Generate 3D Stacked Bifurcating Double Deep Cellular Automata based organisms which differentiate using a Genetic Algorithm...
Grow Function: A 3D Stacked Bifurcating Double Deep Cellular Automata which differentiates using a Genetic Algorithm... TLDR;High Def Trees that you can mint as NFTs on Solana
Train neural network for semantic segmentation (deep lab V3) with pytorch in less then 50 lines of code
Train neural network for semantic segmentation (deep lab V3) with pytorch in 50 lines of code Train net semantic segmentation net using Trans10K datas
Pipeline for training LSA models using Scikit-Learn.
Latent Semantic Analysis Pipeline for training LSA models using Scikit-Learn. Usage Instead of writing custom code for latent semantic analysis, you j
This is a project built for FALLABOUT2021 event under SRMMIC, This project deals with NLP poetry generation.
FALLABOUT-SRMMIC 21 POETRY-GENERATION HINGLISH DESCRIPTION We have developed a NLP(natural language processing) model which automatically generates a
Pre-Training with Whole Word Masking for Chinese BERT
Pre-Training with Whole Word Masking for Chinese BERT
GPT-3: Language Models are Few-Shot Learners
GPT-3: Language Models are Few-Shot Learners arXiv link Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-trainin
Official implementations for various pre-training models of ERNIE-family, covering topics of Language Understanding & Generation, Multimodal Understanding & Generation, and beyond.
English|简体中文 ERNIE是百度开创性提出的基于知识增强的持续学习语义理解框架,该框架将大数据预训练与多源丰富知识相结合,通过持续学习技术,不断吸收海量文本数据中词汇、结构、语义等方面的知识,实现模型效果不断进化。ERNIE在累积 40 余个典型 NLP 任务取得 SOTA 效果,并在 G
Revisiting Pre-trained Models for Chinese Natural Language Processing (Findings of EMNLP 2020)
This repository contains the resources in our paper "Revisiting Pre-trained Models for Chinese Natural Language Processing", which will be published i
Optimus: the first large-scale pre-trained VAE language model
Optimus: the first pre-trained Big VAE language model This repository contains source code necessary to reproduce the results presented in the EMNLP 2
SentAugment is a data augmentation technique for semi-supervised learning in NLP.
SentAugment SentAugment is a data augmentation technique for semi-supervised learning in NLP. It uses state-of-the-art sentence embeddings to structur
(ACL-IJCNLP 2021) Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models.
BERT Convolutions Code for the paper Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models. Contains expe
Sorce code and datasets for "K-BERT: Enabling Language Representation with Knowledge Graph",
K-BERT Sorce code and datasets for "K-BERT: Enabling Language Representation with Knowledge Graph", which is implemented based on the UER framework. R
Code for the ACL 2021 paper "Structural Guidance for Transformer Language Models"
Structural Guidance for Transformer Language Models This repository accompanies the paper, Structural Guidance for Transformer Language Models, publis
A single model that parses Universal Dependencies across 75 languages.
A single model that parses Universal Dependencies across 75 languages. Given a sentence, jointly predicts part-of-speech tags, morphology tags, lemmas, and dependency trees.
Research code for the paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models"
Introduction This repository contains research code for the ACL 2021 paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual
[CVPR 2021] VirTex: Learning Visual Representations from Textual Annotations
VirTex: Learning Visual Representations from Textual Annotations Karan Desai and Justin Johnson University of Michigan CVPR 2021 arxiv.org/abs/2006.06
Dense Passage Retriever - is a set of tools and models for open domain Q&A task.
Dense Passage Retrieval Dense Passage Retrieval (DPR) - is a set of tools and models for state-of-the-art open-domain Q&A research. It is based on the
Simple Python library, distributed via binary wheels with few direct dependencies, for easily using wav2vec 2.0 models for speech recognition
Wav2Vec2 STT Python Beta Software Simple Python library, distributed via binary wheels with few direct dependencies, for easily using wav2vec 2.0 mode
Train Dense Passage Retriever (DPR) with a single GPU
Gradient Cached Dense Passage Retrieval Gradient Cached Dense Passage Retrieval (GC-DPR) - is an extension of the original DPR library. We introduce G
Toolkit for developing and maintaining ML models
modelkit Python framework for production ML systems. modelkit is a minimalist yet powerful MLOps library for Python, built for people who want to depl
CoRe: Contrastive Recurrent State-Space Models
CoRe: Contrastive Recurrent State-Space Models This code implements the CoRe model and reproduces experimental results found in Robust Robotic Control
The official implementation of Relative Uncertainty Learning for Facial Expression Recognition
Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc
Deep Q Learning with OpenAI Gym and Pokemon Showdown
pokemon-deep-learning An openAI gym project for pokemon involving deep q learning. Made by myself, Sam Little, and Layton Webber. This code captures g
PLUR is a collection of source code datasets suitable for graph-based machine learning.
PLUR (Programming-Language Understanding and Repair) is a collection of source code datasets suitable for graph-based machine learning. We provide scripts for downloading, processing, and loading the datasets. This is done by offering a unified API and data structures for all datasets.
Code for A Volumetric Transformer for Accurate 3D Tumor Segmentation
VT-UNet This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmentaion results of VT-UNet. Environmen
Local Similarity Pattern and Cost Self-Reassembling for Deep Stereo Matching Networks
Local Similarity Pattern and Cost Self-Reassembling for Deep Stereo Matching Networks Contributions A novel pairwise feature LSP to extract structural
Modified GPT using average pooling to reduce the softmax attention memory constraints.
NLP-GPT-Upsampling This repository contains an implementation of Open AI's GPT Model. In particular, this implementation takes inspiration from the Ny
A Light CNN for Deep Face Representation with Noisy Labels
A Light CNN for Deep Face Representation with Noisy Labels Citation If you use our models, please cite the following paper: @article{wulight, title=
Milano is a tool for automating hyper-parameters search for your models on a backend of your choice.
Milano (This is a research project, not an official NVIDIA product.) Documentation https://nvidia.github.io/Milano Milano (Machine learning autotuner
Code & Models for Temporal Segment Networks (TSN) in ECCV 2016
Temporal Segment Networks (TSN) We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation fo
DenseNet Implementation in Keras with ImageNet Pretrained Models
DenseNet-Keras with ImageNet Pretrained Models This is an Keras implementation of DenseNet with ImageNet pretrained weights. The weights are converted
Reproduce ResNet-v2(Identity Mappings in Deep Residual Networks) with MXNet
Reproduce ResNet-v2 using MXNet Requirements Install MXNet on a machine with CUDA GPU, and it's better also installed with cuDNN v5 Please fix the ran
DISTIL: Deep dIverSified inTeractIve Learning.
DISTIL: Deep dIverSified inTeractIve Learning. An active/inter-active learning library built on py-torch for reducing labeling costs.
Code and pre-trained models for "ReasonBert: Pre-trained to Reason with Distant Supervision", EMNLP'2021
ReasonBERT Code and pre-trained models for ReasonBert: Pre-trained to Reason with Distant Supervision, EMNLP'2021 Pretrained Models The pretrained mod
Implementation of the paper 'Sentence Bottleneck Autoencoders from Transformer Language Models'
Introduction This repository contains the code for the paper Sentence Bottleneck Autoencoders from Transformer Language Models by Ivan Montero, Nikola
Diagnostic tests for linguistic capacities in language models
LM diagnostics This repository contains the diagnostic datasets and experimental code for What BERT is not: Lessons from a new suite of psycholinguist
Code for Editing Factual Knowledge in Language Models
KnowledgeEditor Code for Editing Factual Knowledge in Language Models (https://arxiv.org/abs/2104.08164). @inproceedings{decao2021editing, title={Ed
Code for ACL2021 long paper: Knowledgeable or Educated Guess? Revisiting Language Models as Knowledge Bases
LANKA This is the source code for paper: Knowledgeable or Educated Guess? Revisiting Language Models as Knowledge Bases (ACL 2021, long paper) Referen
EMNLP 2021 paper The Devil is in the Detail: Simple Tricks Improve Systematic Generalization of Transformers.
Codebase for training transformers on systematic generalization datasets. The official repository for our EMNLP 2021 paper The Devil is in the Detail:
Code for the paper "Are Sixteen Heads Really Better than One?"
Are Sixteen Heads Really Better than One? This repository contains code to reproduce the experiments in our paper Are Sixteen Heads Really Better than
The official implementation of "BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Identify Analogies?, ACL 2021 main conference"
BERT is to NLP what AlexNet is to CV This is the official implementation of BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Iden
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators
ELECTRA Introduction ELECTRA is a method for self-supervised language representation learning. It can be used to pre-train transformer networks using
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.
DeepSpeed+Megatron trained the world's most powerful language model: MT-530B DeepSpeed is hiring, come join us! DeepSpeed is a deep learning optimizat
Implementation of Continuous Sparsification, a method for pruning and ticket search in deep networks
Continuous Sparsification Implementation of Continuous Sparsification (CS), a method based on l_0 regularization to find sparse neural networks, propo
Super Tickets in Pre-Trained Language Models: From Model Compression to Improving Generalization (ACL 2021)
Structured Super Lottery Tickets in BERT This repo contains our codes for the paper "Super Tickets in Pre-Trained Language Models: From Model Compress
Research code for "What to Pre-Train on? Efficient Intermediate Task Selection", EMNLP 2021
efficient-task-transfer This repository contains code for the experiments in our paper "What to Pre-Train on? Efficient Intermediate Task Selection".
Multi-Task Deep Neural Networks for Natural Language Understanding
New Release We released Adversarial training for both LM pre-training/finetuning and f-divergence. Large-scale Adversarial training for LMs: ALUM code
Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.
Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.
This repository contains the code for "Exploiting Cloze Questions for Few-Shot Text Classification and Natural Language Inference"
Pattern-Exploiting Training (PET) This repository contains the code for Exploiting Cloze Questions for Few-Shot Text Classification and Natural Langua
ACL'2021: LM-BFF: Better Few-shot Fine-tuning of Language Models
LM-BFF (Better Few-shot Fine-tuning of Language Models) This is the implementation of the paper Making Pre-trained Language Models Better Few-shot Lea
EasyTransfer is designed to make the development of transfer learning in NLP applications easier.
EasyTransfer is designed to make the development of transfer learning in NLP applications easier. The literature has witnessed the success of applying
PyTorch source code of NAACL 2019 paper "An Embarrassingly Simple Approach for Transfer Learning from Pretrained Language Models"
This repository contains source code for NAACL 2019 paper "An Embarrassingly Simple Approach for Transfer Learning from Pretrained Language Models" (P
Source code for the ACL-IJCNLP 2021 paper entitled "T-DNA: Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adaptation" by Shizhe Diao et al.
T-DNA Source code for the ACL-IJCNLP 2021 paper entitled Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adapta
🥇Samsung AI Challenge 2021 1등 솔루션입니다🥇
MoT - Molecular Transformer Large-scale Pretraining for Molecular Property Prediction Samsung AI Challenge for Scientific Discovery This repository is
The code is the training example of AAAI2022 Security AI Challenger Program Phase 8: Data Centric Robot Learning on ML models.
Example code of [Tianchi AAAI2022 Security AI Challenger Program Phase 8]
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"
This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur
TensorFlow (Python) implementation of DeepTCN model for multivariate time series forecasting.
DeepTCN TensorFlow TensorFlow (Python) implementation of multivariate time series forecasting model introduced in Chen, Y., Kang, Y., Chen, Y., & Wang
Deep learned, hardware-accelerated 3D object pose estimation
Isaac ROS Pose Estimation Overview This repository provides NVIDIA GPU-accelerated packages for 3D object pose estimation. Using a deep learned pose e
DeepFill v1/v2 with Contextual Attention and Gated Convolution, CVPR 2018, and ICCV 2019 Oral
Generative Image Inpainting An open source framework for generative image inpainting task, with the support of Contextual Attention (CVPR 2018) and Ga
Label Studio is a multi-type data labeling and annotation tool with standardized output format
Website • Docs • Twitter • Join Slack Community What is Label Studio? Label Studio is an open source data labeling tool. It lets you label data types
A deep learning based semantic search platform that computes similarity scores between provided query and documents
semanticsearch This is a deep learning based semantic search platform that computes similarity scores between provided query and documents. Documents
Efficient training of deep recommenders on cloud.
HybridBackend Introduction HybridBackend is a training framework for deep recommenders which bridges the gap between evolving cloud infrastructure and
A general framework for deep learning experiments under PyTorch based on pytorch-lightning
torchx Torchx is a general framework for deep learning experiments under PyTorch based on pytorch-lightning. TODO list gan-like training wrapper text
Implementation of Vaswani, Ashish, et al. "Attention is all you need."
Attention Is All You Need Paper Implementation This is my from-scratch implementation of the original transformer architecture from the following pape
Semi-automated vocabulary generation from semantic vector models
vec2word Semi-automated vocabulary generation from semantic vector models This script generates a list of potential conlang word forms along with asso
A command line tool that creates a super timeline from SentinelOne's Deep Visibility data
S1SuperTimeline A command line tool that creates a super timeline from SentinelOne's Deep Visibility data What does it do? The script accepts a S1QL q
Using deep learning to predict gene structures of the coding genes in DNA sequences of Arabidopsis thaliana
DeepGeneAnnotator: A tool to annotate the gene in the genome The master thesis of the "Using deep learning to predict gene structures of the coding ge
Open source person re-identification library in python
Open-ReID Open-ReID is a lightweight library of person re-identification for research purpose. It aims to provide a uniform interface for different da
UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss
UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss This repository contains the TensorFlow implementation of the paper UnF
ClearML - Auto-Magical Suite of tools to streamline your ML workflow. Experiment Manager, MLOps and Data-Management
ClearML - Auto-Magical Suite of tools to streamline your ML workflow Experiment Manager, MLOps and Data-Management ClearML Formerly known as Allegro T
DeepAL: Deep Active Learning in Python
DeepAL: Deep Active Learning in Python Python implementations of the following active learning algorithms: Random Sampling Least Confidence [1] Margin
Dataset for the Research2Clinics @ NeurIPS 2021 Paper: What Do You See in this Patient? Behavioral Testing of Clinical NLP Models
Behavioral Testing of Clinical NLP Models This repository contains code for testing the behavior of clinical prediction models based on patient letter
Codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense neural networks
DominoSearch This is repository for codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense n
Official PyTorch Implementation of HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning (NeurIPS 2021 Spotlight)
[NeurIPS 2021 Spotlight] HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning [Paper] This is Official PyTorch implementatio
Official implementation of Representer Point Selection via Local Jacobian Expansion for Post-hoc Classifier Explanation of Deep Neural Networks and Ensemble Models at NeurIPS 2021
Representer Point Selection via Local Jacobian Expansion for Classifier Explanation of Deep Neural Networks and Ensemble Models This repository is the
Using Random Effects to Account for High-Cardinality Categorical Features and Repeated Measures in Deep Neural Networks
LMMNN Using Random Effects to Account for High-Cardinality Categorical Features and Repeated Measures in Deep Neural Networks This is the working dire
Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting
QAConv Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting This PyTorch code is proposed in
Code for "On Memorization in Probabilistic Deep Generative Models"
On Memorization in Probabilistic Deep Generative Models This repository contains the code necessary to reproduce the experiments in On Memorization in
Toolbox to analyze temporal context invariance of deep neural networks
PyTCI A toolbox that estimates the integration window of a sensory response using the "Temporal Context Invariance" paradigm (TCI). The TCI method Int
Deep Latent Force Models
Deep Latent Force Models This repository contains a PyTorch implementation of the deep latent force model (DLFM), presented in the paper, Compositiona
[NeurIPS 2021] Towards Better Understanding of Training Certifiably Robust Models against Adversarial Examples | ⛰️⚠️
Towards Better Understanding of Training Certifiably Robust Models against Adversarial Examples This repository is the official implementation of "Tow
Representing Long-Range Context for Graph Neural Networks with Global Attention
Graph Augmentation Graph augmentation/self-supervision/etc. Algorithms gcn gcn+virtual node gin gin+virtual node PNA GraphTrans Augmentation methods N
Deep Markov Factor Analysis (NeurIPS2021)
Deep Markov Factor Analysis (DMFA) Codes and experiments for deep Markov factor analysis (DMFA) model accepted for publication at NeurIPS2021: A. Farn
Discerning Decision-Making Process of Deep Neural Networks with Hierarchical Voting Transformation
Configurations Change HOME_PATH in CONFIG.py as the current path Data Prepare CENSINCOME Download data Put census-income.data and census-income.test i