213 Repositories
Python denoising-normalizing-flow Libraries
BDDM: Bilateral Denoising Diffusion Models for Fast and High-Quality Speech Synthesis
Bilateral Denoising Diffusion Models (BDDMs) This is the official PyTorch implementation of the following paper: BDDM: BILATERAL DENOISING DIFFUSION M
Official code for "Towards An End-to-End Framework for Flow-Guided Video Inpainting" (CVPR2022)
E2FGVI (CVPR 2022) English | 简体中文 This repository contains the official implementation of the following paper: Towards An End-to-End Framework for Flo
[CVPR 2022] Deep Equilibrium Optical Flow Estimation
Deep Equilibrium Optical Flow Estimation This is the official repo for the paper Deep Equilibrium Optical Flow Estimation (CVPR 2022), by Shaojie Bai*
Flow control is the order in which statements or blocks of code are executed at runtime based on a condition. Learn Conditional statements, Iterative statements, and Transfer statements
03_Python_Flow_Control Introduction 👋 The control flow statements are an essential part of the Python programming language. A control flow statement
The best way to learn Python is by practicing examples. The repository contains examples of basic concepts of Python. You are advised to take the references from these examples and try them on your own.
90_Python_Exercises_and_Challenges The best way to learn Python is by practicing examples. This repository contains the examples on basic and advance
Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis
Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis [Paper] [Online Demo] The following results are obtained by our SCUNet with purely syn
The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal Transport Maps, ICLR 2022.
Generative Modeling with Optimal Transport Maps The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal
Scalable Optical Flow-based Image Montaging and Alignment
SOFIMA SOFIMA (Scalable Optical Flow-based Image Montaging and Alignment) is a tool for stitching, aligning and warping large 2d, 3d and 4d microscopy
Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in Pytorch
Retrieval-Augmented Denoising Diffusion Probabilistic Models (wip) Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in P
Provide baselines and evaluation metrics of the task: traffic flow prediction
Note: This repo is adpoted from https://github.com/UNIMIBInside/Smart-Mobility-Prediction. Due to technical reasons, I did not fork their code. Introd
scAR (single-cell Ambient Remover) is a package for data denoising in single-cell omics.
scAR scAR (single cell Ambient Remover) is a package for denoising multiple single cell omics data. It can be used for multiple tasks, such as, sgRNA
This is an official implementation of the CVPR2022 paper "Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots".
Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots Blind2Unblind Citing Blind2Unblind @inproceedings{wang2022blind2unblind, tit
PyTorch Implementation of DiffGAN-TTS: High-Fidelity and Efficient Text-to-Speech with Denoising Diffusion GANs
DiffGAN-TTS - PyTorch Implementation PyTorch implementation of DiffGAN-TTS: High
RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation
RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation YouTube | BiliBili 16X interpolation results from two input images: Introd
Tensorflow 2 implementation of our high quality frame interpolation neural network
FILM: Frame Interpolation for Large Scene Motion Project | Paper | YouTube | Benchmark Scores Tensorflow 2 implementation of our high quality frame in
Generative Flow Networks for Discrete Probabilistic Modeling
Energy-based GFlowNets Code for Generative Flow Networks for Discrete Probabilistic Modeling by Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Vo
The 7th edition of NTIRE: New Trends in Image Restoration and Enhancement workshop will be held on June 2022 in conjunction with CVPR 2022.
NTIRE 2022 - Image Inpainting Challenge Important dates 2022.02.01: Release of train data (input and output images) and validation data (only input) 2
traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation toolbox based on PyTorch.
traiNNer traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation to
PyTorch implementation of "VRT: A Video Restoration Transformer"
VRT: A Video Restoration Transformer Jingyun Liang, Jiezhang Cao, Yuchen Fan, Kai Zhang, Rakesh Ranjan, Yawei Li, Radu Timofte, Luc Van Gool Computer
Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes
Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021 [Projec
Tensorflow Implementation of A Generative Flow for Text-to-Speech via Monotonic Alignment Search
Tensorflow Implementation of A Generative Flow for Text-to-Speech via Monotonic Alignment Search
Fast and exact ILP-based solvers for the Minimum Flow Decomposition (MFD) problem, and variants of it.
MFD-ILP Fast and exact ILP-based solvers for the Minimum Flow Decomposition (MFD) problem, and variants of it. The solvers are implemented using Pytho
E-RAFT: Dense Optical Flow from Event Cameras
E-RAFT: Dense Optical Flow from Event Cameras This is the code for the paper E-RAFT: Dense Optical Flow from Event Cameras by Mathias Gehrig, Mario Mi
Code for the CVPR2021 workshop paper "Noise Conditional Flow Model for Learning the Super-Resolution Space"
NCSR: Noise Conditional Flow Model for Learning the Super-Resolution Space Official NCSR training PyTorch Code for the CVPR2021 workshop paper "Noise
🚀 PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)"
PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)" Unofficial PyTorch Implementation of Progressi
The trained model and denoising example for paper : Cardiopulmonary Auscultation Enhancement with a Two-Stage Noise Cancellation Approach
The trained model and denoising example for paper : Cardiopulmonary Auscultation Enhancement with a Two-Stage Noise Cancellation Approach
Flow-based visual scripting for Python
A simple visual node editor for Python Ryven combines flow-based visual scripting with Python. It gives you absolute freedom for your nodes and a simp
Dimension Reduced Turbulent Flow Data From Deep Vector Quantizers
Dimension Reduced Turbulent Flow Data From Deep Vector Quantizers This is an implementation of A Physics-Informed Vector Quantized Autoencoder for Dat
Denoising images with Fourier Ring Correlation loss
Denoising images with Fourier Ring Correlation loss The python code accompanies the working manuscript Image quality measurements and denoising using
El Niño - Southern Oscillation analysis compared to minimum flow rates of rivers in northeast Brazil
ENSO (El Niño - Southern Oscillation) analysis in northeast Brazil É comprovada a influência dos fenômenos El Niño e La Niña nas secas no nordesde bra
A High-Quality Real Time Upscaler for Anime Video
Anime4K Anime4K is a set of open-source, high-quality real-time anime upscaling/denoising algorithms that can be implemented in any programming langua
A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising (CVPR 2020 Oral & TPAMI 2021)
ELD The implementation of CVPR 2020 (Oral) paper "A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising" and its journal (TPAMI) v
Generate code from JSON schema files
json-schema-codegen Generate code from JSON schema files. Table of contents Introduction Currently supported languages Requirements Installation Usage
Tutorials and implementations for "Self-normalizing networks"
Self-Normalizing Networks Tutorials and implementations for "Self-normalizing networks"(SNNs) as suggested by Klambauer et al. (arXiv pre-print). Vers
Pythonic particle-based (super-droplet) warm-rain/aqueous-chemistry cloud microphysics package with box, parcel & 1D/2D prescribed-flow examples in Python, Julia and Matlab
PySDM PySDM is a package for simulating the dynamics of population of particles. It is intended to serve as a building block for simulation systems mo
Reinforcement learning algorithms in RLlib
raylab Reinforcement learning algorithms in RLlib and PyTorch. Installation pip install raylab Quickstart Raylab provides agents and environments to b
(EI 2022) Controllable Confidence-Based Image Denoising
Image Denoising with Control over Deep Network Hallucination Paper and arXiv preprint -- Our frequency-domain insights derive from SFM and the concept
A simple Tensorflow based library for deep and/or denoising AutoEncoder.
libsdae - deep-Autoencoder & denoising autoencoder A simple Tensorflow based library for Deep autoencoder and denoising AE. Library follows sklearn st
Net2net - Network-to-Network Translation with Conditional Invertible Neural Networks
Net2Net Code accompanying the NeurIPS 2020 oral paper Network-to-Network Translation with Conditional Invertible Neural Networks Robin Rombach*, Patri
Pytorch-diffusion - A basic PyTorch implementation of 'Denoising Diffusion Probabilistic Models'
PyTorch implementation of 'Denoising Diffusion Probabilistic Models' This reposi
Minimal diffusion models - Minimal code and simple experiments to play with Denoising Diffusion Probabilistic Models (DDPMs)
Minimal code and simple experiments to play with Denoising Diffusion Probabilist
The official MegEngine implementation of the ICCV 2021 paper: GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning
[ICCV 2021] GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning This is the official implementation of our ICCV2021 paper GyroFlow. Our pres
PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our paper
Flow Gaussian Mixture Model (FlowGMM) This repository contains a PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our pa
A NASA MEaSUREs project to provide automated, low latency, global glacier flow and elevation change datasets
Notebooks A NASA MEaSUREs project to provide automated, low latency, global glacier flow and elevation change datasets This repository provides tools
A short term landscape evolution using a path sampling method to solve water and sediment flow continuity equations and model mass flows over complex topographies.
r.sim.terrain A short-term landscape evolution model that simulates topographic change for both steady state and dynamic flow regimes across a range o
TE-dependent analysis (tedana) is a Python library for denoising multi-echo functional magnetic resonance imaging (fMRI) data
tedana: TE Dependent ANAlysis TE-dependent analysis (tedana) is a Python library for denoising multi-echo functional magnetic resonance imaging (fMRI)
CVPR2021 Workshop - HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization.
HDRUNet [Paper Link] HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization By Xiangyu Chen, Yihao Liu, Zhengwen Zhang, Yu Qiao an
Traditional deepdream with VQGAN+CLIP and optical flow. Ready to use in Google Colab
VQGAN-CLIP-Video cat.mp4 policeman.mp4 schoolboy.mp4 forsenBOG.mp4
signac-flow - manage workflows with signac
signac-flow - manage workflows with signac The signac framework helps users manage and scale file-based workflows, facilitating data reuse, sharing, a
A Python concurrency scheduling library, compatible with asyncio and trio.
aiometer aiometer is a Python 3.6+ concurrency scheduling library compatible with asyncio and trio and inspired by Trimeter. It makes it easier to exe
🌎 The Modern Declarative Data Flow Framework for the AI Empowered Generation.
🌎 JSONClasses JSONClasses is a declarative data flow pipeline and data graph framework. Official Website: https://www.jsonclasses.com Official Docume
Volumetric Correspondence Networks for Optical Flow, NeurIPS 2019.
VCN: Volumetric correspondence networks for optical flow [project website] Requirements python 3.6 pytorch 1.1.0-1.3.0 pytorch correlation module (opt
This repository contains the code for the ICCV 2019 paper "Occupancy Flow - 4D Reconstruction by Learning Particle Dynamics"
Occupancy Flow This repository contains the code for the project Occupancy Flow - 4D Reconstruction by Learning Particle Dynamics. You can find detail
Flow is a computational framework for deep RL and control experiments for traffic microsimulation.
Flow Flow is a computational framework for deep RL and control experiments for traffic microsimulation. See our website for more information on the ap
A repository built on the Flow software package to explore cyber-security attacks on intelligent transportation systems.
A repository built on the Flow software package to explore cyber-security attacks on intelligent transportation systems.
PyTorch implementation of normalizing flow models
PyTorch implementation of normalizing flow models
A PowSyBl and Python integration based on GraalVM native image
PyPowSyBl The PyPowSyBl project gives access PowSyBl Java framework to Python developers. This Python integration relies on GraalVM to compile Java co
Self-Supervised Image Denoising via Iterative Data Refinement
Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S
Official code for "Maximum Likelihood Training of Score-Based Diffusion Models", NeurIPS 2021 (spotlight)
Maximum Likelihood Training of Score-Based Diffusion Models This repo contains the official implementation for the paper Maximum Likelihood Training o
A modular PyTorch library for optical flow estimation using neural networks
A modular PyTorch library for optical flow estimation using neural networks
The code release of paper Low-Light Image Enhancement with Normalizing Flow
[AAAI 2022] Low-Light Image Enhancement with Normalizing Flow Paper | Project Page Low-Light Image Enhancement with Normalizing Flow Yufei Wang, Renji
The best solution of the Weather Prediction track in the Yandex Shifts challenge
yandex-shifts-weather The repository contains information about my solution for the Weather Prediction track in the Yandex Shifts challenge https://re
[AAAI2022] Source code for our paper《Suppressing Static Visual Cues via Normalizing Flows for Self-Supervised Video Representation Learning》
SSVC The source code for paper [Suppressing Static Visual Cues via Normalizing Flows for Self-Supervised Video Representation Learning] samples of the
Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks
Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks Work accepted at NeurIPS'21 [paper, video]. If you use this code in
MLflow App Using React, Hooks, RabbitMQ, FastAPI Server, Celery, Microservices
Katana ML Skipper This is a simple and flexible ML workflow engine. It helps to orchestrate events across a set of microservices and create executable
Python implementation of Spotify's authorization flow.
Spotify API Apps 🎷 🎶 🎼 This repository consists of many strange codes that make you think why the hell this guy doing this. Well... I got some reas
Adaptive Denoising Training (ADT) for Recommendation.
DenoisingRec Adaptive Denoising Training for Recommendation. This is the pytorch implementation of our paper at WSDM 2021: Denoising Implicit Feedback
Denoising Diffusion Probabilistic Models
Denoising Diffusion Probabilistic Models Jonathan Ho, Ajay Jain, Pieter Abbeel Paper: https://arxiv.org/abs/2006.11239 Website: https://hojonathanho.g
Denoising Diffusion Implicit Models
Denoising Diffusion Implicit Models (DDIM) Jiaming Song, Chenlin Meng and Stefano Ermon, Stanford Implements sampling from an implicit model that is t
Score-Based Point Cloud Denoising (ICCV'21)
Score-Based Point Cloud Denoising (ICCV'21) [Paper] https://arxiv.org/abs/2107.10981 Installation Recommended Environment The code has been tested in
Official implementation of Densely connected normalizing flows
Densely connected normalizing flows This repository is the official implementation of NeurIPS 2021 paper Densely connected normalizing flows. Poster a
Annealed Flow Transport Monte Carlo
Annealed Flow Transport Monte Carlo Open source implementation accompanying ICML 2021 paper by Michael Arbel*, Alexander G. D. G. Matthews* and Arnaud
Inflated i3d network with inception backbone, weights transfered from tensorflow
I3D models transfered from Tensorflow to PyTorch This repo contains several scripts that allow to transfer the weights from the tensorflow implementat
A Pythonic framework for threat modeling
pytm: A Pythonic framework for threat modeling Introduction Traditional threat modeling too often comes late to the party, or sometimes not at all. In
UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss
UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss This repository contains the TensorFlow implementation of the paper UnF
Self-Supervised Image Denoising via Iterative Data Refinement
Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S
Denoising Normalizing Flow
Denoising Normalizing Flow Christian Horvat and Jean-Pascal Pfister 2021 We combine Normalizing Flows (NFs) and Denoising Auto Encoder (DAE) by introd
Code for models used in Bashiri et al., "A Flow-based latent state generative model of neural population responses to natural images".
A Flow-based latent state generative model of neural population responses to natural images Code for "A Flow-based latent state generative model of ne
FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows
FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows.
Official Pytorch Implementation of Unsupervised Image Denoising With Frequency Domain Knowledge (BMVC2021 Oral Accepted Paper)
Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page This repository provides the official PyTorch im
Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge
Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page This repository provides the official PyTorch im
Fast mesh denoising with data driven normal filtering using deep variational autoencoders
Fast mesh denoising with data driven normal filtering using deep variational autoencoders This is an implementation for the paper entitled "Fast mesh
Research code for the paper "Variational Gibbs inference for statistical estimation from incomplete data".
Variational Gibbs inference (VGI) This repository contains the research code for Simkus, V., Rhodes, B., Gutmann, M. U., 2021. Variational Gibbs infer
GMFlow: Learning Optical Flow via Global Matching
GMFlow GMFlow: Learning Optical Flow via Global Matching Authors: Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, Dacheng Tao We streamline the
SwinIR: Image Restoration Using Swin Transformer
SwinIR: Image Restoration Using Swin Transformer This repository is the official PyTorch implementation of SwinIR: Image Restoration Using Shifted Win
Benchmarks for the Optimal Power Flow Problem
Power Grid Lib - Optimal Power Flow This benchmark library is curated and maintained by the IEEE PES Task Force on Benchmarks for Validation of Emergi
DivNoising is an unsupervised denoising method to generate diverse denoised samples for any noisy input image. This repository contains the code to reproduce the results reported in the paper https://openreview.net/pdf?id=agHLCOBM5jP
DivNoising: Diversity Denoising with Fully Convolutional Variational Autoencoders Mangal Prakash1, Alexander Krull1,2, Florian Jug2 1Authors contribut
Universal Probability Distributions with Optimal Transport and Convex Optimization
Sylvester normalizing flows for variational inference Pytorch implementation of Sylvester normalizing flows, based on our paper: Sylvester normalizing
Official repository for "Restormer: Efficient Transformer for High-Resolution Image Restoration". SOTA for motion deblurring, image deraining, denoising (Gaussian/real data), and defocus deblurring.
Restormer: Efficient Transformer for High-Resolution Image Restoration Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan,
Neural Scene Flow Fields using pytorch-lightning, with potential improvements
nsff_pl Neural Scene Flow Fields using pytorch-lightning. This repo reimplements the NSFF idea, but modifies several operations based on observation o
A denoising autoencoder + adversarial losses and attention mechanisms for face swapping.
faceswap-GAN Adding Adversarial loss and perceptual loss (VGGface) to deepfakes'(reddit user) auto-encoder architecture. Updates Date Update 2018-08-2
Official repository for "Restormer: Efficient Transformer for High-Resolution Image Restoration". SOTA results for single-image motion deblurring, image deraining, image denoising (synthetic and real data), and dual-pixel defocus deblurring.
Restormer: Efficient Transformer for High-Resolution Image Restoration Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan,
Traffic flow test platform, especially for reinforcement learning
Traffic Flow Test Platform Traffic flow test platform, especially for reinforcement learning, named TFTP. A traffic signal control framework that can
Abusing Microsoft 365 OAuth Authorization Flow for Phishing Attack
O365DevicePhish Microsoft365_devicePhish Abusing Microsoft 365 OAuth Authorization Flow for Phishing Attack This is a simple proof-of-concept script t
DeepSTD: Mining Spatio-temporal Disturbances of Multiple Context Factors for Citywide Traffic Flow Prediction
DeepSTD: Mining Spatio-temporal Disturbances of Multiple Context Factors for Citywide Traffic Flow Prediction This is the implementation of DeepSTD in
MMFlow is an open source optical flow toolbox based on PyTorch
Documentation: https://mmflow.readthedocs.io/ Introduction English | 简体中文 MMFlow is an open source optical flow toolbox based on PyTorch. It is a part
Identifies the faulty wafer before it can be used for the fabrication of integrated circuits and, in photovoltaics, to manufacture solar cells.
Identifies the faulty wafer before it can be used for the fabrication of integrated circuits and, in photovoltaics, to manufacture solar cells. The project retrains itself after every prediction, making it more robust and generalized over time.
Aydin is a user-friendly, feature-rich, and fast image denoising tool
Aydin is a user-friendly, feature-rich, and fast image denoising tool that provides a number of self-supervised, auto-tuned, and unsupervised image denoising algorithms.
Implementation for the paper: Invertible Denoising Network: A Light Solution for Real Noise Removal (CVPR2021).
Invertible Image Denoising This is the PyTorch implementation of paper: Invertible Denoising Network: A Light Solution for Real Noise Removal (CVPR 20
Metrinome is an all-purpose tool for working with code complexity metrics.
Overview Metrinome is an all-purpose tool for working with code complexity metrics. It can be used as both a REPL and API, and includes: Converters to