266 Repositories
Python differentiable-computing Libraries
Xanadu Quantum Codebook is an experimental, exercise-based introduction to quantum computing using PennyLane.
Xanadu Quantum Codebook The Xanadu Quantum Codebook is an experimental, exercise-based introduction to quantum computing using PennyLane. This reposit
Data imputations library to preprocess datasets with missing data
Impyute is a library of missing data imputation algorithms. This library was designed to be super lightweight, here's a sneak peak at what impyute can do.
Fast EMD for Python: a wrapper for Pele and Werman's C++ implementation of the Earth Mover's Distance metric
PyEMD: Fast EMD for Python PyEMD is a Python wrapper for Ofir Pele and Michael Werman's implementation of the Earth Mover's Distance that allows it to
An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models.
An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models. Hyperactive: is very easy to lear
Scikit-Garden or skgarden is a garden for Scikit-Learn compatible decision trees and forests.
Scikit-Garden or skgarden (pronounced as skarden) is a garden for Scikit-Learn compatible decision trees and forests.
A Python package for performing pore network modeling of porous media
Overview of OpenPNM OpenPNM is a comprehensive framework for performing pore network simulations of porous materials. More Information For more detail
AI Toolkit for Healthcare Imaging
Medical Open Network for AI MONAI is a PyTorch-based, open-source framework for deep learning in healthcare imaging, part of PyTorch Ecosystem. Its am
Fcpy: A Python package for high performance, fast convergence and high precision numerical fractional calculus computing.
Fcpy: A Python package for high performance, fast convergence and high precision numerical fractional calculus computing.
Backtesting an algorithmic trading strategy using Machine Learning and Sentiment Analysis.
Trading Tesla with Machine Learning and Sentiment Analysis An interactive program to train a Random Forest Classifier to predict Tesla daily prices us
Taichi is a parallel programming language for high-performance numerical computations.
Taichi is a parallel programming language for high-performance numerical computations.
A tool to determine optimal projects for Gridcoin crunchers. Maximize your magnitude!
FindTheMag FindTheMag helps optimize your BOINC client for Gridcoin mining. You can group BOINC projects into two groups: "preferred" projects and "mi
Bio-Computing Platform Featuring Large-Scale Representation Learning and Multi-Task Deep Learning “螺旋桨”生物计算工具集
English | 简体中文 Latest News 2021.10.25 Paper "Docking-based Virtual Screening with Multi-Task Learning" is accepted by BIBM 2021. 2021.07.29 PaddleHeli
Learning infinite-resolution image processing with GAN and RL from unpaired image datasets, using a differentiable photo editing model.
Exposure: A White-Box Photo Post-Processing Framework ACM Transactions on Graphics (presented at SIGGRAPH 2018) Yuanming Hu1,2, Hao He1,2, Chenxi Xu1,
The repository forked from NVlabs uses our data. (Differentiable rasterization applied to 3D model simplification tasks)
nvdiffmodeling [origin_code] Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Autom
High performance distributed framework for training deep learning recommendation models based on PyTorch.
High performance distributed framework for training deep learning recommendation models based on PyTorch.
An experimental Python-to-C transpiler and domain specific language for embedded high-performance computing
An experimental Python-to-C transpiler and domain specific language for embedded high-performance computing
Fast, general, and tested differentiable structured prediction in PyTorch
Fast, general, and tested differentiable structured prediction in PyTorch
Python bindings for JIGSAW: a Delaunay-based unstructured mesh generator.
JIGSAW: An unstructured mesh generator JIGSAW is an unstructured mesh generator and tessellation library; designed to generate high-quality triangulat
This repo. is an implementation of ACFFNet, which is accepted for in Image and Vision Computing.
Attention-Guided-Contextual-Feature-Fusion-Network-for-Salient-Object-Detection This repo. is an implementation of ACFFNet, which is accepted for in I
Powerful, efficient particle trajectory analysis in scientific Python.
freud Overview The freud Python library provides a simple, flexible, powerful set of tools for analyzing trajectories obtained from molecular dynamics
A JAX-based research framework for writing differentiable numerical simulators with arbitrary discretizations
jaxdf - JAX-based Discretization Framework Overview | Example | Installation | Documentation ⚠️ This library is still in development. Breaking changes
A Differentiable Recipe for Learning Visual Non-Prehensile Planar Manipulation
A Differentiable Recipe for Learning Visual Non-Prehensile Planar Manipulation This repository contains the source code of the paper A Differentiable
A collection of differentiable SVD methods and also the official implementation of the ICCV21 paper "Why Approximate Matrix Square Root Outperforms Accurate SVD in Global Covariance Pooling?"
Differentiable SVD Introduction This repository contains: The official Pytorch implementation of ICCV21 paper Why Approximate Matrix Square Root Outpe
[NeurIPS'21] Shape As Points: A Differentiable Poisson Solver
Shape As Points (SAP) Paper | Project Page | Short Video (6 min) | Long Video (12 min) This repository contains the implementation of the paper: Shape
Guiding evolutionary strategies by (inaccurate) differentiable robot simulators @ NeurIPS, 4th Robot Learning Workshop
Guiding Evolutionary Strategies by Differentiable Robot Simulators In recent years, Evolutionary Strategies were actively explored in robotic tasks fo
A workflow management tool for numerical models on the NCI computing systems
Payu Payu is a climate model workflow management tool for supercomputing environments. Payu is currently only configured for use on computing clusters
Companion repo of the UCC 2021 paper "Predictive Auto-scaling with OpenStack Monasca"
Predictive Auto-scaling with OpenStack Monasca Giacomo Lanciano*, Filippo Galli, Tommaso Cucinotta, Davide Bacciu, Andrea Passarella 2021 IEEE/ACM 14t
Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language (NeurIPS 2021)
VRDP (NeurIPS 2021) Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language Mingyu Ding, Zhenfang Chen, Tao Du, Pin
Freecodecamp Scientific Computing with Python Certification; Solution for Challenge 2: Time Calculator
Assignment Write a function named add_time that takes in two required parameters and one optional parameter: a start time in the 12-hour clock format
[v1 (ISBI'21) + v2] MedMNIST: A Large-Scale Lightweight Benchmark for 2D and 3D Biomedical Image Classification
MedMNIST Project (Website) | Dataset (Zenodo) | Paper (arXiv) | MedMNIST v1 (ISBI'21) Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bili
A suite of benchmarks for CPU and GPU performance of the most popular high-performance libraries for Python :rocket:
A suite of benchmarks for CPU and GPU performance of the most popular high-performance libraries for Python :rocket:
Towhee is a flexible machine learning framework currently focused on computing deep learning embeddings over unstructured data.
Towhee is a flexible machine learning framework currently focused on computing deep learning embeddings over unstructured data.
🎵 A repository for manually annotating files to create labeled acoustic datasets for machine learning.
🎵 A repository for manually annotating files to create labeled acoustic datasets for machine learning.
Differentiable Quantum Chemistry (only Differentiable Density Functional Theory and Hartree Fock at the moment)
DQC: Differentiable Quantum Chemistry Differentiable quantum chemistry package. Currently only support differentiable density functional theory (DFT)
A simple Blog Using Django Framework and Used IBM Cloud Services for Text Analysis and Text to Speech
ElhamBlog Cloud Computing Course first assignment. A simple Blog Using Django Framework and Used IBM Cloud Services for Text Analysis and Text to Spee
Federated_learning codes used for the the paper "Evaluation of Federated Learning Aggregation Algorithms" and "A Federated Learning Aggregation Algorithm for Pervasive Computing: Evaluation and Comparison"
Federated Distance (FedDist) This is the code accompanying the Percom2021 paper "A Federated Learning Aggregation Algorithm for Pervasive Computing: E
A PyTorch-centric hybrid classical-quantum machine learning framework
torchquantum A PyTorch-centric hybrid classical-quantum dynamic neural networks framework. News Add a simple example script using quantum gates to do
an implementation of softmax splatting for differentiable forward warping using PyTorch
softmax-splatting This is a reference implementation of the softmax splatting operator, which has been proposed in Softmax Splatting for Video Frame I
Differentiable scientific computing library
xitorch: differentiable scientific computing library xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely
General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends)
General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends). Blazing fast, mobile-enabled, asynchronous and optimized for advanced GPU data processing usecases. Backed by the Linux Foundation.
Deep learning library for solving differential equations and more
DeepXDE Voting on whether we should have a Slack channel for discussion. DeepXDE is a library for scientific machine learning. Use DeepXDE if you need
DiSECt: Differentiable Simulator for Robotic Cutting
DiSECt: Differentiable Simulator for Robotic Cutting Website | Paper | Dataset | Video | Blog post DiSECt is a simulator for the cutting of deformable
Image Reading, Metadata Conversion, and Image Writing for Microscopy Images in Python
AICSImageIO Image Reading, Metadata Conversion, and Image Writing for Microscopy Images in Pure Python Features Supports reading metadata and imaging
FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes
FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes This repository contains the source code accompanying the paper: FlexConv: C
Cirq is a Python library for writing, manipulating, and optimizing quantum circuits and running them against quantum computers and simulators
Cirq is a Python library for writing, manipulating, and optimizing quantum circuits and running them against quantum computers and simulators. Install
A Python framework for developing parallelized Computational Fluid Dynamics software to solve the hyperbolic 2D Euler equations on distributed, multi-block structured grids.
pyHype: Computational Fluid Dynamics in Python pyHype is a Python framework for developing parallelized Computational Fluid Dynamics software to solve
EasyBuild is a software build and installation framework that allows you to manage (scientific) software on High Performance Computing (HPC) systems in an efficient way.
EasyBuild is a software build and installation framework that allows you to manage (scientific) software on High Performance Computing (HPC) systems in an efficient way.
A style-based Quantum Generative Adversarial Network
Style-qGAN A style based Quantum Generative Adversarial Network (style-qGAN) model for Monte Carlo event generation. Tutorial We have prepared a noteb
ADOP: Approximate Differentiable One-Pixel Point Rendering
ADOP: Approximate Differentiable One-Pixel Point Rendering Abstract: We present a novel point-based, differentiable neural rendering pipeline for scen
Open Data Cube analyses continental scale Earth Observation data through time
Open Data Cube Core Overview The Open Data Cube Core provides an integrated gridded data analysis environment for decades of analysis ready earth obse
Official Repo for ICCV2021 Paper: Learning to Regress Bodies from Images using Differentiable Semantic Rendering
[ICCV2021] Learning to Regress Bodies from Images using Differentiable Semantic Rendering Getting Started DSR has been implemented and tested on Ubunt
Repo for EchoVPR: Echo State Networks for Visual Place Recognition
EchoVPR Repo for EchoVPR: Echo State Networks for Visual Place Recognition Currently under development Dirs: data: pre-collected hidden representation
This is the repository of our article published on MDPI Entropy "Feature Selection for Recommender Systems with Quantum Computing".
Collaborative-driven Quantum Feature Selection This repository was developed by Riccardo Nembrini, PhD student at Politecnico di Milano. See the websi
This project is used for the paper Differentiable Programming of Isometric Tensor Network
This project is used for the paper "Differentiable Programming of Isometric Tensor Network". (arXiv:2110.03898)
A Software Framework for Neuromorphic Computing
A Software Framework for Neuromorphic Computing
This repository contains the code for the CVPR 2020 paper "Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision"
Differentiable Volumetric Rendering Paper | Supplementary | Spotlight Video | Blog Entry | Presentation | Interactive Slides | Project Page This repos
A PyTorch Library for Accelerating 3D Deep Learning Research
Kaolin: A Pytorch Library for Accelerating 3D Deep Learning Research Overview NVIDIA Kaolin library provides a PyTorch API for working with a variety
Scientific Computation Methods in C and Python (Open for Hacktoberfest 2021)
Sci - cpy README is a stub. Do expand it. Objective This repository is meant to be a ready reference for scientific computation methods. Do ⭐ it if yo
Code for the paper "Next Generation Reservoir Computing"
Next Generation Reservoir Computing This is the code for the results and figures in our paper "Next Generation Reservoir Computing". They are written
Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.
Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.
Differentiable architecture search for convolutional and recurrent networks
Differentiable Architecture Search Code accompanying the paper DARTS: Differentiable Architecture Search Hanxiao Liu, Karen Simonyan, Yiming Yang. arX
Differentiable Surface Triangulation
Differentiable Surface Triangulation This is our implementation of the paper Differentiable Surface Triangulation that enables optimization for any pe
Lingvo is a framework for building neural networks in Tensorflow, particularly sequence models.
Lingvo is a framework for building neural networks in Tensorflow, particularly sequence models.
OptNet: Differentiable Optimization as a Layer in Neural Networks
OptNet: Differentiable Optimization as a Layer in Neural Networks This repository is by Brandon Amos and J. Zico Kolter and contains the PyTorch sourc
Client library for accessing IQM quantum computers
IQM Client Client-side library for connecting to an IQM quantum computer. Installation IQM client is not intended to be used directly by human users.
OptNet: Differentiable Optimization as a Layer in Neural Networks
OptNet: Differentiable Optimization as a Layer in Neural Networks This repository is by Brandon Amos and J. Zico Kolter and contains the PyTorch sourc
Pytorch implementation of DeepMind's differentiable neural computer paper.
DNC pytorch This is a Pytorch implementation of DeepMind's Differentiable Neural Computer (DNC) architecture introduced in their recent Nature paper:
Kornia is a open source differentiable computer vision library for PyTorch.
Open Source Differentiable Computer Vision Library
This is a vision-based 3d model manipulation and control UI
Manipulation of 3D Models Using Hand Gesture This program allows user to manipulation 3D models (.obj format) with their hands. The project support bo
Material related to the Principles of Cloud Computing course.
CloudComputingCourse Material related to the Principles of Cloud Computing course. This repository comprises material that I use to teach my Principle
PennyLane is a cross-platform Python library for differentiable programming of quantum computers.
PennyLane is a cross-platform Python library for differentiable programming of quantum computers. Train a quantum computer the same way as a neural network.
TorchIO is a Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.
Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.
Differentiable Factor Graph Optimization for Learning Smoothers @ IROS 2021
Differentiable Factor Graph Optimization for Learning Smoothers Overview Status Setup Datasets Training Evaluation Acknowledgements Overview Code rele
Neural Turing Machine (NTM) & Differentiable Neural Computer (DNC) with pytorch & visdom
Neural Turing Machine (NTM) & Differentiable Neural Computer (DNC) with pytorch & visdom Sample on-line plotting while training(avg loss)/testing(writ
Deep learning for spiking neural networks
A deep learning library for spiking neural networks. Norse aims to exploit the advantages of bio-inspired neural components, which are sparse and even
Library for implementing reservoir computing models (echo state networks) for multivariate time series classification and clustering.
Framework overview This library allows to quickly implement different architectures based on Reservoir Computing (the family of approaches popularized
The official code for paper "R2D2: Recursive Transformer based on Differentiable Tree for Interpretable Hierarchical Language Modeling".
R2D2 This is the official code for paper titled "R2D2: Recursive Transformer based on Differentiable Tree for Interpretable Hierarchical Language Mode
A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.
Note: This is an alpha (preview) version which is still under refining. nn-Meter is a novel and efficient system to accurately predict the inference l
nn-Meter is a novel and efficient system to accurately predict the inference latency of DNN models on diverse edge devices
A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.
A Python library for differentiable optimal control on accelerators.
A Python library for differentiable optimal control on accelerators.
Code for our CVPR 2021 Paper "Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes".
Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes (CVPR 2021) Project page | Paper | Colab | Colab for Drawing App Rethinking Style
Differentiable Neural Computers, Sparse Access Memory and Sparse Differentiable Neural Computers, for Pytorch
Differentiable Neural Computers and family, for Pytorch Includes: Differentiable Neural Computers (DNC) Sparse Access Memory (SAM) Sparse Differentiab
Experiments with differentiable stacks and queues in PyTorch
Please use stacknn-core instead! StackNN This project implements differentiable stacks and queues in PyTorch. The data structures are implemented in s
[RSS 2021] An End-to-End Differentiable Framework for Contact-Aware Robot Design
DiffHand This repository contains the implementation for the paper An End-to-End Differentiable Framework for Contact-Aware Robot Design (RSS 2021). I
Hardware accelerated, batchable and differentiable optimizers in JAX.
JAXopt Installation | Examples | References Hardware accelerated (GPU/TPU), batchable and differentiable optimizers in JAX. Installation JAXopt can be
Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators
Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators. It's also a suite of learning algorithms to train agents to operate in these environments (PPO, SAC, evolutionary strategy, and direct trajectory optimization are implemented).
This is an differentiable pytorch implementation of SIFT patch descriptor.
This is an differentiable pytorch implementation of SIFT patch descriptor. It is very slow for describing one patch, but quite fast for batch. It can
The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dealing with medical images.
The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dealing with medical images.
XGBoost-Ray is a distributed backend for XGBoost, built on top of distributed computing framework Ray.
XGBoost-Ray is a distributed backend for XGBoost, built on top of distributed computing framework Ray.
This is my reading list for my PhD in AI, NLP, Deep Learning and more.
This is my reading list for my PhD in AI, NLP, Deep Learning and more.
nnDetection is a self-configuring framework for 3D (volumetric) medical object detection which can be applied to new data sets without manual intervention. It includes guides for 12 data sets that were used to develop and evaluate the performance of the proposed method.
What is nnDetection? Simultaneous localisation and categorization of objects in medical images, also referred to as medical object detection, is of hi
EdMIPS: Rethinking Differentiable Search for Mixed-Precision Neural Networks
EdMIPS is an efficient algorithm to search the optimal mixed-precision neural network directly without proxy task on ImageNet given computation budgets. It can be applied to many popular network architectures, including ResNet, GoogLeNet, and Inception-V3.
Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators
Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators. It's also a suite of learning algorithms to train agents to operate in these environments (PPO, SAC, evolutionary strategy, and direct trajectory optimization are implemented).
PyTorch implementation of Soft-DTW: a Differentiable Loss Function for Time-Series in CUDA
Soft DTW Loss Function for PyTorch in CUDA This is a Pytorch Implementation of Soft-DTW: a Differentiable Loss Function for Time-Series which is batch
Lyapunov-guided Deep Reinforcement Learning for Stable Online Computation Offloading in Mobile-Edge Computing Networks
PyTorch code to reproduce LyDROO algorithm [1], which is an online computation offloading algorithm to maximize the network data processing capability subject to the long-term data queue stability and average power constraints. It applies Lyapunov optimization to decouple the multi-stage stochastic MINLP into deterministic per-frame MINLP subproblems and solves each subproblem via DROO algorithm. It includes:
This websocket program is for data transmission between server and client. Data transmission is for Federated Learning in Edge computing environment.
websocket-for-data-transmission This websocket program is for data transmission between server and client. Data transmission is for Federated Learning
Request based Python module(s) to help with the Newegg raffle.
Newegg Shuffle Python module(s) to help you with the Newegg raffle How to use $ git clone https://github.com/Matthew17-21/Newegg-Shuffle $ cd Newegg-S
A python implementation of differentiable quality diversity.
Differentiable Quality Diversity This repository is the official implementation of Differentiable Quality Diversity.
A lightweight (serverless) native python parallel processing framework based on simple decorators and call graphs.
A lightweight (serverless) native python parallel processing framework based on simple decorators and call graphs, supporting both control flow and dataflow execution paradigms as well as de-centralized CPU & GPU scheduling.
Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling
Parallel Tacotron2 Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling