1514 Repositories
Python efficient-models Libraries
Convert BART models to ONNX with quantization. 3X reduction in size, and upto 3X boost in inference speed
fast-Bart Reduction of BART model size by 3X, and boost in inference speed up to 3X BART implementation of the fastT5 library (https://github.com/Ki6a
KoRean based ELECTRA pre-trained models (KR-ELECTRA) for Tensorflow and PyTorch
KoRean based ELECTRA (KR-ELECTRA) This is a release of a Korean-specific ELECTRA model with comparable or better performances developed by the Computa
BASH - Biomechanical Animated Skinned Human
We developed a method animating a statistical 3D human model for biomechanical analysis to increase accessibility for non-experts, like patients, athletes, or designers.
JFB: Jacobian-Free Backpropagation for Implicit Models
JFB: Jacobian-Free Backpropagation for Implicit Models
Datasets and pretrained Models for StyleGAN3 ...
Datasets and pretrained Models for StyleGAN3 ... Dear arfiticial friend, this is a collection of artistic datasets and models that we have put togethe
SGPT: Multi-billion parameter models for semantic search
SGPT: Multi-billion parameter models for semantic search This repository contains code, results and pre-trained models for the paper SGPT: Multi-billi
Blender 3.1 Alpha (and later) PLY importer that correctly loads point clouds (and all PLY models as point clouds)
import-ply-as-verts Blender 3.1 Alpha (and later) PLY importer that correctly loads point clouds (and all PLY models as point clouds) Latest News Mand
Learning Efficient Online 3D Bin Packing on Packing Configuration Trees
Learning Efficient Online 3D Bin Packing on Packing Configuration Trees This repository is being continuously updated, please stay tuned! Any code con
Gold(Gold) is a modern cryptocurrency built from scratch, designed to be efficient, decentralized, and secure
gold-blockchain (Gold) Gold(Gold) is a modern cryptocurrency built from scratch, designed to be efficient, decentralized, and secure. Here are some of
Pretrained Japanese BERT models
Pretrained Japanese BERT models This is a repository of pretrained Japanese BERT models. The models are available in Transformers by Hugging Face. Mod
The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding.
SuperGen The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding. Requirements Before running, you
Explore extreme compression for pre-trained language models
Code for paper "Exploring extreme parameter compression for pre-trained language models ICLR2022"
The pyrelational package offers a flexible workflow to enable active learning with as little change to the models and datasets as possible
pyrelational is a python active learning library developed by Relation Therapeutics for rapidly implementing active learning pipelines from data management, model development (and Bayesian approximation), to creating novel active learning strategies.
Youtube Downloader is a simple but highly efficient Youtube Video Downloader, made completly using Python
Youtube Downloader is a simple but highly efficient Youtube Video Downloader, made completly using Python
A demo project to elaborate how Machine Learn Models are deployed on production using Flask API
This is a salary prediction website developed with the help of machine learning, this makes prediction of salary on basis of few parameters like interview score, experience test score.
Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces"
Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces" This repo contains the implementation of GEBO algorithm.
Posterior temperature optimized Bayesian models for inverse problems in medical imaging
Posterior temperature optimized Bayesian models for inverse problems in medical imaging Max-Heinrich Laves*, Malte Tölle*, Alexander Schlaefer, Sandy
Efficient Deep Learning Systems course
Efficient Deep Learning Systems This repository contains materials for the Efficient Deep Learning Systems course taught at the Faculty of Computer Sc
Code Repository for "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection"
Hierarchical Token Semantic Audio Transformer Introduction The Code Repository for "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound
Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions"
Graph Convolution Simulator (GCS) Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions" Requirements: PyTor
Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation
Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation This reposi
FewBit — a library for memory efficient training of large neural networks
FewBit FewBit — a library for memory efficient training of large neural networks. Its efficiency originates from storage optimizations applied to back
Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure.
Event Queue Dialect Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure. Motivation The m
Transformers provides thousands of pretrained models to perform tasks on different modalities such as text, vision, and audio.
English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained models
Source code for EquiDock: Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking (ICLR 2022)
Source code for EquiDock: Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking (ICLR 2022) Please cite "Independent SE(3)-Equivar
This repository provides an efficient PyTorch-based library for training deep models.
An Efficient Library for Training Deep Models This repository provides an efficient PyTorch-based library for training deep models. Installation Make
Trafffic prediction analysis using hybrid models - Machine Learning
Hybrid Machine learning Model Clone the Repository Create a new Directory as assests and download the model from the below link Model Link To Start th
Tensorflow2 Keras-based Semantic Segmentation Models Implementation
Tensorflow2 Keras-based Semantic Segmentation Models Implementation
NeuralForecast is a Python library for time series forecasting with deep learning models
NeuralForecast is a Python library for time series forecasting with deep learning models. It includes benchmark datasets, data-loading utilities, evaluation functions, statistical tests, univariate model benchmarks and SOTA models implemented in PyTorch and PyTorchLightning.
Natural language processing summarizer using 3 state of the art Transformer models: BERT, GPT2, and T5
NLP-Summarizer Natural language processing summarizer using 3 state of the art Transformer models: BERT, GPT2, and T5 This project aimed to provide in
A U-Net combined with a variational auto-encoder that is able to learn conditional distributions over semantic segmentations.
Probabilistic U-Net + **Update** + An improved Model (the Hierarchical Probabilistic U-Net) + LIDC crops is now available. See below. Re-implementatio
A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution.
Awesome Pretrained StyleGAN2 A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution. Note the readme is a
A curated list of Generative Deep Art projects, tools, artworks, and models
Generative Deep Art A curated list of Generative Deep Art projects, tools, artworks, and models Inbox Get started with making AI art in 2022 – deeplea
Semantic Segmentation Suite in TensorFlow
Semantic Segmentation Suite in TensorFlow. Implement, train, and test new Semantic Segmentation models easily!
This project aims at providing a concise, easy-to-use, modifiable reference implementation for semantic segmentation models using PyTorch.
Semantic Segmentation on PyTorch (include FCN, PSPNet, Deeplabv3, Deeplabv3+, DANet, DenseASPP, BiSeNet, EncNet, DUNet, ICNet, ENet, OCNet, CCNet, PSANet, CGNet, ESPNet, LEDNet, DFANet)
Human segmentation models, training/inference code, and trained weights, implemented in PyTorch
Human-Segmentation-PyTorch Human segmentation models, training/inference code, and trained weights, implemented in PyTorch. Supported networks UNet: b
Machine Learning Models were applied to predict the mass of the brain based on gender, age ranges, and head size.
Brain Weight in Humans Variations of head sizes and brain weights in humans Kaggle dataset obtained from this link by Anubhab Swain. Image obtained fr
The official code repo of "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection"
Hierarchical Token Semantic Audio Transformer Introduction The Code Repository for "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound
This is an early in-development version of training CLIP models with hivemind.
A transformer that does not hog your GPU memory This is an early in-development codebase: if you want a stable and documented hivemind codebase, look
Constrained Language Models Yield Few-Shot Semantic Parsers
Constrained Language Models Yield Few-Shot Semantic Parsers This repository contains tools and instructions for reproducing the experiments in the pap
This GitHub repo consists of Code and Some results of project- Diabetes Treatment using Gold nanoparticles. These Consist of ML Models used for prediction Diabetes and further the basic theory and working of Gold nanoparticles.
GoldNanoparticles This GitHub repo consists of Code and Some results of project- Diabetes Treatment using Gold nanoparticles. These Consist of ML Mode
spaCy-wrap: For Wrapping fine-tuned transformers in spaCy pipelines
spaCy-wrap: For Wrapping fine-tuned transformers in spaCy pipelines spaCy-wrap is minimal library intended for wrapping fine-tuned transformers from t
Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction".
GNN_PPI Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction". Lear
In this workshop we will be exploring NLP state of the art transformers, with SOTA models like T5 and BERT, then build a model using HugginFace transformers framework.
Transformers are all you need In this workshop we will be exploring NLP state of the art transformers, with SOTA models like T5 and BERT, then build a
Training DiffWave using variational method from Variational Diffusion Models.
Variational DiffWave Training DiffWave using variational method from Variational Diffusion Models. Quick Start python train_distributed.py discrete_10
Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners
DART Implementation for ICLR2022 paper Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners. Environment [email protected] Use pi
BaseCls BaseCls 是一个基于 MegEngine 的预训练模型库,帮助大家挑选或训练出更适合自己科研或者业务的模型结构
BaseCls BaseCls 是一个基于 MegEngine 的预训练模型库,帮助大家挑选或训练出更适合自己科研或者业务的模型结构。 文档地址:https://basecls.readthedocs.io 安装 安装环境 BaseCls 需要 Python = 3.6。 BaseCls 依赖 M
NaturalCC is a sequence modeling toolkit that allows researchers and developers to train custom models
NaturalCC NaturalCC is a sequence modeling toolkit that allows researchers and developers to train custom models for many software engineering tasks,
smc.covid is an R package related to the paper A sequential Monte Carlo approach to estimate a time varying reproduction number in infectious disease models: the COVID-19 case by Storvik et al
smc.covid smc.covid is an R package related to the paper A sequential Monte Carlo approach to estimate a time varying reproduction number in infectiou
An Approach to Explore Logistic Regression Models
User-centered Regression An Approach to Explore Logistic Regression Models This tool applies the potential of Attribute-RadViz in identifying correlat
Official repository for the paper "On Evaluation Metrics for Graph Generative Models"
On Evaluation Metrics for Graph Generative Models Authors: Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, Graham Taylor This is the offic
This is the source code for the experiments related to the paper Unsupervised Audio Source Separation Using Differentiable Parametric Source Models
Unsupervised Audio Source Separation Using Differentiable Parametric Source Models This is the source code for the experiments related to the paper Un
PyTorch implementation of our paper How robust are discriminatively trained zero-shot learning models?
How robust are discriminatively trained zero-shot learning models? This repository contains the PyTorch implementation of our paper How robust are dis
Check out the StyleGAN repo and place it in the same directory hierarchy as the present repo
Variational Model Inversion Attacks Kuan-Chieh Wang, Yan Fu, Ke Li, Ashish Khisti, Richard Zemel, Alireza Makhzani Most commands are in run_scripts. W
Main Results on ImageNet with Pretrained Models
This repository contains Pytorch evaluation code, training code and pretrained models for the following projects: SPACH (A Battle of Network Structure
Title: Graduate-Admissions-Predictor
The purpose of this project is create a predictive model capable of identifying the probability of a person securing an admit based on their personal profile parameters. Simplified visualisations have been created for understanding the data. 80% accuracy was achieved on the test set.
Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch
Semantic Segmentation Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch Features Applicable to followin
Twitter bot that uses NLP models to summarize news articles referenced in a user's twitter timeline
Twitter-News-Summarizer Twitter bot that uses NLP models to summarize news articles referenced in a user's twitter timeline 1.) Extracts all tweets fr
OptiPLANT is a cloud-based based system that empowers professional and non-professional data scientists to build high-quality predictive models
OptiPLANT OptiPLANT is a cloud-based based system that empowers professional and non-professional data scientists to build high-quality predictive mod
Efficient-GlobalPointer - Pytorch Efficient GlobalPointer
引言 感谢苏神带来的模型,原文地址:https://spaces.ac.cn/archives/8877 如何运行 对应模型EfficientGlobalPoi
This repo provides the source code & data of our paper "GreaseLM: Graph REASoning Enhanced Language Models"
GreaseLM: Graph REASoning Enhanced Language Models This repo provides the source code & data of our paper "GreaseLM: Graph REASoning Enhanced Language
This repository contains pre-trained models and some evaluation code for our paper Towards Unsupervised Dense Information Retrieval with Contrastive Learning
Contriever: Towards Unsupervised Dense Information Retrieval with Contrastive Learning This repository contains pre-trained models and some evaluation
Annotating the Tweebank Corpus on Named Entity Recognition and Building NLP Models for Social Media Analysis
TweebankNLP This repo contains the new Tweebank-NER dataset and off-the-shelf Twitter-Stanza pipeline for state-of-the-art Tweet NLP, as described in
Revisiting Weakly Supervised Pre-Training of Visual Perception Models
SWAG: Supervised Weakly from hashtAGs This repository contains SWAG models from the paper Revisiting Weakly Supervised Pre-Training of Visual Percepti
On Out-of-distribution Detection with Energy-based Models
On Out-of-distribution Detection with Energy-based Models This repository contains the code for the experiments conducted in the paper On Out-of-distr
This repository contains code to train and render Mixture of Volumetric Primitives (MVP) models
Mixture of Volumetric Primitives -- Training and Evaluation This repository contains code to train and render Mixture of Volumetric Primitives (MVP) m
"Structure-Augmented Text Representation Learning for Efficient Knowledge Graph Completion"(WWW 2021)
STAR_KGC This repo contains the source code of the paper accepted by WWW'2021. "Structure-Augmented Text Representation Learning for Efficient Knowled
Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models
Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models Abstract Many applications of generative models rely on the marginali
Boltzmann visualization - Visualize the Boltzmann distribution for simple quantum models of molecular motion
Boltzmann visualization - Visualize the Boltzmann distribution for simple quantum models of molecular motion
f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation
f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation [Paper] [PyTorch] [MXNet] [Video] This repository provides code for training
BERTopic is a topic modeling technique that leverages 🤗 transformers and c-TF-IDF to create dense clusters allowing for easily interpretable topics whilst keeping important words in the topic descriptions
BERTopic BERTopic is a topic modeling technique that leverages 🤗 transformers and c-TF-IDF to create dense clusters allowing for easily interpretable
COVID-VIT: Classification of Covid-19 from CT chest images based on vision transformer models
COVID-ViT COVID-VIT: Classification of Covid-19 from CT chest images based on vision transformer models This code is to response to te MIA-COV19 compe
Pre-trained models for a Cascaded-FCN in caffe and tensorflow that segments
Cascaded-FCN This repository contains the pre-trained models for a Cascaded-FCN in caffe and tensorflow that segments the liver and its lesions out of
Raster Vision is an open source Python framework for building computer vision models on satellite, aerial, and other large imagery sets
Raster Vision is an open source Python framework for building computer vision models on satellite, aerial, and other large imagery sets (including obl
This repository contains code, network definitions and pre-trained models for working on remote sensing images using deep learning
Deep learning for Earth Observation This repository contains code, network definitions and pre-trained models for working on remote sensing images usi
A collection of semantic image segmentation models implemented in TensorFlow
A collection of semantic image segmentation models implemented in TensorFlow. Contains data-loaders for the generic and medical benchmark datasets.
On Evaluation Metrics for Graph Generative Models
On Evaluation Metrics for Graph Generative Models Authors: Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, Graham Taylor This is the offic
Creating Multi Task Models With Keras
Creating Multi Task Models With Keras About The Project! I used the keras and Tensorflow Library, To build a Deep Learning Neural Network to Creating
A "multiclipboards" script for an efficient way to improve the original clipboards which are only able to save one string at a time
A "multiclipboards" script for an efficient way to improve the original clipboards which are only able to save one string at a time. Works on both Windows and Linux.
Efficient Multi Collection Style Transfer Using GAN
Proposed a new model that can make style transfer from single style image, and allow to transfer into multiple different styles in a single model.
ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch
ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch
Feature engineering and machine learning: together at last
Feature engineering and machine learning: together at last! Lambdo is a workflow engine which significantly simplifies data analysis by unifying featu
Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently
Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently This repository is the official implementat
A functional and efficient python implementation of the 3D version of Maxwell's equations
py-maxwell-fdfd Solving Maxwell's equations via A python implementation of the 3D curl-curl E-field equations. This code contains additional work to e
OCR-D wrapper for detectron2 based segmentation models
ocrd_detectron2 OCR-D wrapper for detectron2 based segmentation models Introduction Installation Usage OCR-D processor interface ocrd-detectron2-segm
Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents
Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents [Project Page] [Paper] [Video] Wenlong Huang1, Pieter Abbee
Utilities to make function-based views cleaner, more efficient, and better tasting.
django-fbv Utilities to make Django function-based views cleaner, more efficient, and better tasting. 💥 📖 Complete documentation: https://django-fbv
TLXZoo - Pre-trained models based on TensorLayerX
Pre-trained models based on TensorLayerX. TensorLayerX is a multi-backend AI fra
Blackstone is a spaCy model and library for processing long-form, unstructured legal text
Blackstone Blackstone is a spaCy model and library for processing long-form, unstructured legal text. Blackstone is an experimental research project f
A curated list of efficient attention modules
awesome-fast-attention A curated list of efficient attention modules
Local-Global Stratified Transformer for Efficient Video Recognition
DualFormer This repo is the implementation of our manuscript entitled "Local-Global Stratified Transformer for Efficient Video Recognition". Our model
Efficient Online Bayesian Inference for Neural Bandits
Efficient Online Bayesian Inference for Neural Bandits By Gerardo Durán-Martín, Aleyna Kara, and Kevin Murphy AISTATS 2022.
The Official PyTorch Implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 spotlight paper)
Official PyTorch implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 Spotlight Paper) Zhisheng
PyTorch implementation of image classification models for CIFAR-10/CIFAR-100/MNIST/FashionMNIST/Kuzushiji-MNIST/ImageNet
PyTorch Image Classification Following papers are implemented using PyTorch. ResNet (1512.03385) ResNet-preact (1603.05027) WRN (1605.07146) DenseNet
T‘rex Park is a Youzan sponsored project. Offering Chinese NLP and image models pretrained from E-commerce datasets
T‘rex Park is a Youzan sponsored project. Offering Chinese NLP and image models pretrained from E-commerce datasets (product titles, images, comments, etc.).
TweebankNLP - Pre-trained Tweet NLP Pipeline (NER, tokenization, lemmatization, POS tagging, dependency parsing) + Models + Tweebank-NER
TweebankNLP This repo contains the new Tweebank-NER dataset and Twitter-Stanza p
ColossalAI-Examples - Examples of training models with hybrid parallelism using ColossalAI
ColossalAI-Examples This repository contains examples of training models with Co
Pipeline for employing a Lightweight deep learning models for LOW-power systems
PL-LOW A high-performance deep learning model lightweight pipeline that gradually lightens deep neural networks in order to utilize high-performance d
🚀 PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)"
PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)" Unofficial PyTorch Implementation of Progressi
cl;asification problem using classification models in supervised learning
wine-quality-predition---classification cl;asification problem using classification models in supervised learning Wine Quality Prediction Analysis - C