174 Repositories
Python finding-decision-heterogeneity-regions Libraries
Test symmetries with sklearn decision tree models
Test symmetries with sklearn decision tree models Setup Begin from an environment with a recent version of python 3. source setup.sh Leave the enviro
Honours project, on creating a depth estimation map from two stereo images of featureless regions
image-processing This module generates depth maps for shape-blocked-out images Install If working with anaconda, then from the root directory: conda e
Decision Border Visualizer for Classification Algorithms
dbv Decision Border Visualizer for Classification Algorithms Project description A python package for Machine Learning Engineers who want to visualize
Path finding algorithm visualizer with python
path-finding-algorithm-visualizer ~ click on the grid to place the starting block and then click elsewhere to add the end block ~ click again to place
Code for "Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance" at NeurIPS 2021
Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance Justin Lim, Christina X Ji, Michael Oberst, Saul Blecker, Leor
PyTorch and GPyTorch implementation of the paper "Conditioning Sparse Variational Gaussian Processes for Online Decision-making."
Conditioning Sparse Variational Gaussian Processes for Online Decision-making This repository contains a PyTorch and GPyTorch implementation of the pa
Python script for finding duplicate images within a folder.
Python script for finding duplicate images within a folder.
A simple python implementation of Decision Tree.
DecisionTree A simple python implementation of Decision Tree, using Gini index. Usage: import DecisionTree node = DecisionTree.trainDecisionTree(lab
Dynamica causal Bayesian optimisation
Dynamic Causal Bayesian Optimization This is a Python implementation of Dynamic Causal Bayesian Optimization as presented at NeurIPS 2021. Abstract Th
Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders
Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders Getting Started Install requirements with Anaconda: conda env c
Crop regions in napari manually
napari-crop Crop regions in napari manually Usage Create a new shapes layer to annotate the region you would like to crop: Use the rectangle tool to a
PyTorch implementation of the paper Ultra Fast Structure-aware Deep Lane Detection
PyTorch implementation of the paper Ultra Fast Structure-aware Deep Lane Detection
missing-pixel-filler is a python package that, given images that may contain missing data regions (like satellite imagery with swath gaps), returns these images with the regions filled.
Missing Pixel Filler This is the official code repository for the Missing Pixel Filler by SpaceML. missing-pixel-filler is a python package that, give
A python software that can help blind people find things like laptops, phones, etc the same way a guide dog guides a blind person in finding his way.
GuidEye A python software that can help blind people find things like laptops, phones, etc the same way a guide dog guides a blind person in finding h
Find the best repos to contribute to, right from Discord!
repo-finder-bot Find the best repos to contribute to, right from Discord! Add to your server FAQs Hmm. What's this? This is the Repo Finder Bot, a bot
Subdomain enumeration,Web scraping and finding usernames automation script written in python
Subdomain enumeration,Web scraping and finding usernames automation script written in python
PyPI package for scaffolding out code for decision tree models that can learn to find relationships between the attributes of an object.
Decision Tree Writer This package allows you to train a binary classification decision tree on a list of labeled dictionaries or class instances, and
Disease Informed Neural Networks (DINNs) — neural networks capable of learning how diseases spread, forecasting their progression, and finding their unique parameters (e.g. death rate).
DINN We introduce Disease Informed Neural Networks (DINNs) — neural networks capable of learning how diseases spread, forecasting their progression, a
Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders
Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders
Azua - build AI algorithms to aid efficient decision-making with minimum data requirements.
Project Azua 0. Overview Many modern AI algorithms are known to be data-hungry, whereas human decision-making is much more efficient. The human can re
Hydra: an Extensible Fuzzing Framework for Finding Semantic Bugs in File Systems
Hydra: An Extensible Fuzzing Framework for Finding Semantic Bugs in File Systems Paper Finding Semantic Bugs in File Systems with an Extensible Fuzzin
PyTorch implementation of the WarpedGANSpace: Finding non-linear RBF paths in GAN latent space (ICCV 2021)
Authors official PyTorch implementation of the "WarpedGANSpace: Finding non-linear RBF paths in GAN latent space" [ICCV 2021].
IDAPatternSearch adds a capability of finding functions according to bit-patterns into the well-known IDA Pro disassembler based on Ghidra’s function patterns format.
IDA Pattern Search by Argus Cyber Security Ltd. The IDA Pattern Search plugin adds a capability of finding functions according to bit-patterns into th
This module is for finding the execution time of a whole python program
exetime 3.8 This module is for finding the execution time of a whole program How to install $ pip install exetime Contents: General Information Instru
pytorch implementation of "Distilling a Neural Network Into a Soft Decision Tree"
Soft-Decision-Tree Soft-Decision-Tree is the pytorch implementation of Distilling a Neural Network Into a Soft Decision Tree, paper recently published
Making decision trees competitive with neural networks on CIFAR10, CIFAR100, TinyImagenet200, Imagenet
Neural-Backed Decision Trees · Site · Paper · Blog · Video Alvin Wan, *Lisa Dunlap, *Daniel Ho, Jihan Yin, Scott Lee, Henry Jin, Suzanne Petryk, Sarah
A practice program to find the LCM i.e Lowest Common Multiplication of two numbers using python without library.
Finding-LCM-using-python-from-scratch Here, I write a practice program to find the LCM i.e Lowest Common Multiplication of two numbers using python wi
Code and dataset for the EMNLP 2021 Finding paper "Can NLI Models Verify QA Systems’ Predictions?"
Code and dataset for the EMNLP 2021 Finding paper "Can NLI Models Verify QA Systems’ Predictions?"
x-ray is a Python library for finding bad redactions in PDF documents.
A tool to detect whether a PDF has a bad redaction
决策树分类与回归模型的实现和可视化
DecisionTree 决策树分类与回归模型,以及可视化 DecisionTree ID3 C4.5 CART 分类 回归 决策树绘制 分类树 回归树 调参 剪枝 ID3 ID3决策树是最朴素的决策树分类器: 无剪枝 只支持离散属性 采用信息增益准则 在data.py中,我们记录了一个小的西瓜数据
Decentralized Reinforcment Learning: Global Decision-Making via Local Economic Transactions (ICML 2020)
Decentralized Reinforcement Learning This is the code complementing the paper Decentralized Reinforcment Learning: Global Decision-Making via Local Ec
A library for finding knowledge neurons in pretrained transformer models.
knowledge-neurons An open source repository replicating the 2021 paper Knowledge Neurons in Pretrained Transformers by Dai et al., and extending the t
RESTler is the first stateful REST API fuzzing tool for automatically testing cloud services through their REST APIs and finding security and reliability bugs in these services.
RESTler is the first stateful REST API fuzzing tool for automatically testing cloud services through their REST APIs and finding security and reliability bugs in these services.
A library for finding knowledge neurons in pretrained transformer models.
knowledge-neurons An open source repository replicating the 2021 paper Knowledge Neurons in Pretrained Transformers by Dai et al., and extending the t
A python library to build Model Trees with Linear Models at the leaves.
A python library to build Model Trees with Linear Models at the leaves.
30 Days Of Machine Learning Using Pytorch
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch
Python 3 tool for finding unclaimed groups on Roblox. Supports multi-threading, multi-processing and HTTP proxies.
roblox-group-scanner Python 3 tool for finding unclaimed groups on Roblox. Supports multi-threading, multi-processing and HTTP proxies. Usage usage: s
Code for the CVPR2021 paper "Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition"
Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition This repository contains code for the CVPR2021 paper "Patch-NetV
Multi Agent Path Finding Algorithms
MATP-solver Simulator collision check path step random initial states or given states Traditional method Seperate A* algorithem Confict-based Search S
Efficient Lottery Ticket Finding: Less Data is More
The lottery ticket hypothesis (LTH) reveals the existence of winning tickets (sparse but critical subnetworks) for dense networks, that can be trained in isolation from random initialization to match the latter’s accuracies.
Disagreement-Regularized Imitation Learning
Due to a normalization bug the expert trajectories have lower performance than the rl_baseline_zoo reported experts. Please see the following link in
Official codebase for Decision Transformer: Reinforcement Learning via Sequence Modeling.
Decision Transformer Lili Chen*, Kevin Lu*, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas†, and Igor M
TensorFlow Decision Forests (TF-DF) is a collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models.
TensorFlow Decision Forests (TF-DF) is a collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models. The library is a collection of Keras models and supports classification, regression and ranking. TF-DF is a TensorFlow wrapper around the Yggdrasil Decision Forests C++ libraries. Models trained with TF-DF are compatible with Yggdrasil Decision Forests' models, and vice versa.
NExfil is an OSINT tool written in python for finding profiles by username.
NExfil is an OSINT tool written in python for finding profiles by username. The provided usernames are checked on over 350 websites within few seconds.
SCodeScanner stands for Source Code scanner where the user can scans the source code for finding the Critical Vulnerabilities.
The SCodeScanner stands for Source Code Scanner, where you can scan your source code files like PHP and get identify the vulnerabilities inside it. The tool can use by Pentester, Developer to quickly identify the weakness.
Finding an Unsupervised Image Segmenter in each of your Deep Generative Models
Finding an Unsupervised Image Segmenter in each of your Deep Generative Models Description Recent research has shown that numerous human-interpretable
Improving Deep Network Debuggability via Sparse Decision Layers
Improving Deep Network Debuggability via Sparse Decision Layers This repository contains the code for our paper: Leveraging Sparse Linear Layers for D
[CVPR21] LightTrack: Finding Lightweight Neural Network for Object Tracking via One-Shot Architecture Search
LightTrack: Finding Lightweight Neural Networks for Object Tracking via One-Shot Architecture Search The official implementation of the paper LightTra
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch
30 Days Of Machine Learning Using Pytorch Objective of the repository is to learn and build machine learning models using Pytorch. List of Algorithms
Vulnerability Scanner & Auto Exploiter You can use this tool to check the security by finding the vulnerability in your website or you can use this tool to Get Shells
About create a target list or select one target, scans then exploits, done! Vulnnr is a Vulnerability Scanner & Auto Exploiter You can use this tool t
Neural Oblivious Decision Ensembles
Neural Oblivious Decision Ensembles A supplementary code for anonymous ICLR 2020 submission. What does it do? It learns deep ensembles of oblivious di
Algorithmic trading using machine learning.
Algorithmic Trading This machine learning algorithm was built using Python 3 and scikit-learn with a Decision Tree Classifier. The program gathers sto
Platform for building statistical models of cities and regions
UrbanSim UrbanSim is a platform for building statistical models of cities and regions. These models help forecast long-range patterns in real estate d
Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GanFormer and TransGan paper
TransGanFormer (wip) Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GansFormer and TransGan paper. I
An introduction of Markov decision process (MDP) and two algorithms that solve MDPs (value iteration, policy iteration) along with their Python implementations.
Markov Decision Process A Markov decision process (MDP), by definition, is a sequential decision problem for a fully observable, stochastic environmen
Automated Machine Learning Pipeline with Feature Engineering and Hyper-Parameters Tuning
The mljar-supervised is an Automated Machine Learning Python package that works with tabular data. I
~1000 book pages + OpenCV + python = page regions identified as paragraphs, lines, images, captions, etc.
cosc428-structor I had an open-ended Computer Vision assignment to complete, and an out-of-copyright book that I wanted to turn into an ebook. Convent
treeinterpreter - Interpreting scikit-learn's decision tree and random forest predictions.
TreeInterpreter Package for interpreting scikit-learn's decision tree and random forest predictions. Allows decomposing each prediction into bias and
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.
Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.
Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a
Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.
Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r
Highly interpretable classifiers for scikit learn, producing easily understood decision rules instead of black box models
Highly interpretable, sklearn-compatible classifier based on decision rules This is a scikit-learn compatible wrapper for the Bayesian Rule List class
🍊 :bar_chart: :bulb: Orange: Interactive data analysis
Orange Data Mining Orange is a data mining and visualization toolbox for novice and expert alike. To explore data with Orange, one requires no program
MazeRL is an application oriented Deep Reinforcement Learning (RL) framework
MazeRL is an application oriented Deep Reinforcement Learning (RL) framework, addressing real-world decision problems. Our vision is to cover the complete development life cycle of RL applications ranging from simulation engineering up to agent development, training and deployment.
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.
Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.
Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a
A plugin for Flake8 finding likely bugs and design problems in your program. Contains warnings that don't belong in pyflakes and pycodestyle.
flake8-bugbear A plugin for Flake8 finding likely bugs and design problems in your program. Contains warnings that don't belong in pyflakes and pycode
(Now finding maintainer) 🐍A Pythonic way to provide JWT authentication for Flask-GraphQL
Flask-GraphQL-Auth What is Flask-GraphQL-Auth? Flask-GraphQL-Auth is JWT decorator for flask-graphql inspired from Flask-JWT-Extended. all you have to
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.
Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a
Automates Machine Learning Pipeline with Feature Engineering and Hyper-Parameters Tuning :rocket:
MLJAR Automated Machine Learning Documentation: https://supervised.mljar.com/ Source Code: https://github.com/mljar/mljar-supervised Table of Contents
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.
Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree
Simple machine learning library / 簡單易用的機器學習套件
FukuML Simple machine learning library / 簡單易用的機器學習套件 Installation $ pip install FukuML Tutorial Lesson 1: Perceptron Binary Classification Learning Al
Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.
Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r