1311 Repositories
Python graph-classification Libraries
Classification Modeling: Probability of Default
Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information
This is a Image aid classification software based on python TK library development
This is a Image aid classification software based on python TK library development.
Node-level Graph Regression with Deep Gaussian Process Models
Node-level Graph Regression with Deep Gaussian Process Models Prerequests our implementation is mainly based on tensorflow 1.x and gpflow 1.x: python
Language-Agnostic Website Embedding and Classification
Homepage2Vec Language-Agnostic Website Embedding and Classification based on Curlie labels https://arxiv.org/pdf/2201.03677.pdf Homepage2Vec is a pre-
FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing
FairEdit Relevent Publication FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing
Tree-based Search Graph for Approximate Nearest Neighbor Search
TBSG: Tree-based Search Graph for Approximate Nearest Neighbor Search. TBSG is a graph-based algorithm for ANNS based on Cover Tree, which is also an
A Deep Learning Based Knowledge Extraction Toolkit for Knowledge Base Population
DeepKE is a knowledge extraction toolkit supporting low-resource and document-level scenarios for entity, relation and attribute extraction. We provide comprehensive documents, Google Colab tutorials, and online demo for beginners.
Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples
Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples (WACV 2022) and Beyond Simple Meta-Learning: Multi-Purpose Models for Multi-Domain, Active and Continual Few-Shot Learning (TPAMI 2022 - in submission)
This repo is the official implementation for Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting
1 MAGNN This repo is the official implementation for Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting. 1.1 The frame
VisionKG: Vision Knowledge Graph
VisionKG: Vision Knowledge Graph Official Repository of VisionKG by Anh Le-Tuan, Trung-Kien Tran, Manh Nguyen-Duc, Jicheng Yuan, Manfred Hauswirth and
Long text token classification using LongFormer
Long text token classification using LongFormer
Source code for our CVPR 2019 paper - PPGNet: Learning Point-Pair Graph for Line Segment Detection
PPGNet: Learning Point-Pair Graph for Line Segment Detection PyTorch implementation of our CVPR 2019 paper: PPGNet: Learning Point-Pair Graph for Line
The final project of "Applying AI to 2D Medical Imaging Data" of "AI for Healthcare" nanodegree - Udacity.
Pneumonia Detection from X-Rays Project Overview In this project, you will apply the skills that you have acquired in this 2D medical imaging course t
Use graph-based analysis to re-classify stocks and to improve Markowitz portfolio optimization
Dynamic Stock Industrial Classification Use graph-based analysis to re-classify stocks and experiment different re-classification methodologies to imp
Film review classification
Film review classification Решение задачи классификации отзывов на фильмы на положительные и отрицательные с помощью рекуррентных нейронных сетей 1. З
Dagon - An Asynchronous Task Graph Execution Engine
Dagon - An Asynchronous Task Graph Execution Engine Dagon is a job execution sys
A short and easy PyTorch implementation of E(n) Equivariant Graph Neural Networks
Simple implementation of Equivariant GNN A short implementation of E(n) Equivariant Graph Neural Networks for HOMO energy prediction. Just 50 lines of
This repository introduces a short project about Transfer Learning for Classification of MRI Images.
Transfer Learning for MRI Images Classification This repository introduces a short project made during my stay at Neuromatch Summer School 2021. This
This is the course project of AI3602: Data Mining of SJTU
This is the course project of AI3602: Data Mining of SJTU. Group Members include Jinghao Feng, Mingyang Jiang and Wenzhong Zheng.
Text mining project; Using distilBERT to predict authors in the classification task authorship attribution.
DistilBERT-Text-mining-authorship-attribution Dataset used: https://www.kaggle.com/azimulh/tweets-data-for-authorship-attribution-modelling/version/2
Atomistic Line Graph Neural Network
Table of Contents Introduction Installation Examples Pre-trained models Quick start using colab JARVIS-ALIGNN webapp Peformances on a few datasets Use
Code for ICCV 2021 paper Graph-to-3D: End-to-End Generation and Manipulation of 3D Scenes using Scene Graphs
Graph-to-3D This is the official implementation of the paper Graph-to-3d: End-to-End Generation and Manipulation of 3D Scenes Using Scene Graphs | arx
Lbl2Vec learns jointly embedded label, document and word vectors to retrieve documents with predefined topics from an unlabeled document corpus.
Lbl2Vec Lbl2Vec is an algorithm for unsupervised document classification and unsupervised document retrieval. It automatically generates jointly embed
This is RFA-Toolbox, a simple and easy-to-use library that allows you to optimize your neural network architectures using receptive field analysis (RFA) and create graph visualizations of your architecture.
ReceptiveFieldAnalysisToolbox This is RFA-Toolbox, a simple and easy-to-use library that allows you to optimize your neural network architectures usin
👄 The most accurate natural language detection library for Python, suitable for long and short text alike
1. What does this library do? Its task is simple: It tells you which language some provided textual data is written in. This is very useful as a prepr
Unofficial Tensorflow Implementation of ConvNeXt from A ConvNet for the 2020s
Tensorflow Implementation of "A ConvNet for the 2020s" This is the unofficial Tensorflow Implementation of ConvNeXt from "A ConvNet for the 2020s" pap
This repo includes some graph-based CTR prediction models and other representative baselines.
Graph-based CTR prediction This is a repository designed for graph-based CTR prediction methods, it includes our graph-based CTR prediction methods: F
To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types
To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types, from a Database Taken From Dr. Wolberg reports his Clinic Cases.
Python Machine Learning Jupyter Notebooks (ML website)
Python Machine Learning Jupyter Notebooks (ML website) Dr. Tirthajyoti Sarkar, Fremont, California (Please feel free to connect on LinkedIn here) Also
Practical Machine Learning with Python
Master the essential skills needed to recognize and solve complex real-world problems with Machine Learning and Deep Learning by leveraging the highly popular Python Machine Learning Eco-system.
Security audit Python project dependencies against security advisory databases.
Security audit Python project dependencies against security advisory databases.
To design and implement the Identification of Iris Flower species using machine learning using Python and the tool Scikit-Learn.
To design and implement the Identification of Iris Flower species using machine learning using Python and the tool Scikit-Learn.
A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs.
PYGON A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs. Installation This code requires to install and run the graph
[SDM 2022] Towards Similarity-Aware Time-Series Classification
SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie
Classification of Long Sequential Data using Circular Dilated Convolutional Neural Networks
Classification of Long Sequential Data using Circular Dilated Convolutional Neural Networks arXiv preprint: https://arxiv.org/abs/2201.02143. Architec
Pytorch implementation of NEGEV method. Paper: "Negative Evidence Matters in Interpretable Histology Image Classification".
Pytorch 1.10.0 code for: Negative Evidence Matters in Interpretable Histology Image Classification (https://arxiv. org/abs/xxxx.xxxxx) Citation: @arti
FEMDA: Robust classification with Flexible Discriminant Analysis in heterogeneous data
FEMDA: Robust classification with Flexible Discriminant Analysis in heterogeneous data. Flexible EM-Inspired Discriminant Analysis is a robust supervised classification algorithm that performs well in noisy and contaminated datasets.
End-to-end MLOps pipeline of a BERT model for emotion classification.
image source EmoBERT-MLOps The goal of this repository is to build an end-to-end MLOps pipeline based on the MLOps course from Made with ML, but this
Text classification on IMDB dataset using Keras and Bi-LSTM network
Text classification on IMDB dataset using Keras and Bi-LSTM Text classification on IMDB dataset using Keras and Bi-LSTM network. Usage python3 main.py
deep learning for image processing including classification and object-detection etc.
深度学习在图像处理中的应用教程 前言 本教程是对本人研究生期间的研究内容进行整理总结,总结的同时也希望能够帮助更多的小伙伴。后期如果有学习到新的知识也会与大家一起分享。 本教程会以视频的方式进行分享,教学流程如下: 1)介绍网络的结构与创新点 2)使用Pytorch进行网络的搭建与训练 3)使用Te
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices
Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In
Natural Language Processing Best Practices & Examples
NLP Best Practices In recent years, natural language processing (NLP) has seen quick growth in quality and usability, and this has helped to drive bus
🙄 Difficult algorithm, Simple code.
🎉TensorFlow2.0-Examples🎉! "Talk is cheap, show me the code." ----- Linus Torvalds Created by YunYang1994 This tutorial was designed for easily divin
A simple version for graphfpn
GraphFPN: Graph Feature Pyramid Network for Object Detection Download graph-FPN-main.zip For training , run: python train.py For test with Graph_fpn
Code for Overinterpretation paper Overinterpretation reveals image classification model pathologies
Overinterpretation This repository contains the code for the paper: Overinterpretation reveals image classification model pathologies Authors: Brandon
This is the official Pytorch-version code of FlatGCN (Flattened Graph Convolutional Networks for Recommendation).
FlatGCN This is the official Pytorch-version code of FlatGCN (Flattened Graph Convolutional Networks for Recommendation, submitted to ICASSP2022). Req
Deep Learning pipeline for motor-imagery classification.
BCI-ToolBox 1. Introduction BCI-ToolBox is deep learning pipeline for motor-imagery classification. This repo contains five models: ShallowConvNet, De
This application aims to read all wifi passwords and visualizes the complexity in graph formation by taking into account several criteria and help you generate new random passwords.
This application aims to read all wifi passwords and visualizes the complexity in graph formation by taking into account several criteria and help you generate new random passwords.
Fully Convlutional Neural Networks for state-of-the-art time series classification
Deep Learning for Time Series Classification As the simplest type of time series data, univariate time series provides a reasonably good starting poin
Deep Learning for Time Series Classification
Deep Learning for Time Series Classification This is the companion repository for our paper titled "Deep learning for time series classification: a re
Tensorflow implementation of paper: Learning to Diagnose with LSTM Recurrent Neural Networks.
Multilabel time series classification with LSTM Tensorflow implementation of model discussed in the following paper: Learning to Diagnose with LSTM Re
Deep learning PyTorch library for time series forecasting, classification, and anomaly detection
Deep learning for time series forecasting Flow forecast is an open-source deep learning for time series forecasting framework. It provides all the lat
An intuitive library to extract features from time series
Time Series Feature Extraction Library Intuitive time series feature extraction This repository hosts the TSFEL - Time Series Feature Extraction Libra
An LSTM for time-series classification
Update 10-April-2017 And now it works with Python3 and Tensorflow 1.1.0 Update 02-Jan-2017 I updated this repo. Now it works with Tensorflow 0.12. In
Medical appointments No-Show classifier
Medical Appointments No-shows Why do 20% of patients miss their scheduled appointments? A person makes a doctor appointment, receives all the instruct
In this project we use both Resnet and Self-attention layer for cat, dog and flower classification.
cdf_att_classification classes = {0: 'cat', 1: 'dog', 2: 'flower'} In this project we use both Resnet and Self-attention layer for cdf-Classification.
GAT - Graph Attention Network (PyTorch) 💻 + graphs + 📣 = ❤️
GAT - Graph Attention Network (PyTorch) 💻 + graphs + 📣 = ❤️ This repo contains a PyTorch implementation of the original GAT paper ( 🔗 Veličković et
List of papers, code and experiments using deep learning for time series forecasting
Deep Learning Time Series Forecasting List of state of the art papers focus on deep learning and resources, code and experiments using deep learning f
A Practitioner's Guide to Natural Language Processing
Learn how to process, classify, cluster, summarize, understand syntax, semantics and sentiment of text data with the power of Python! This repository contains code and datasets used in my book, Text Analytics with Python published by Apress/Springer.
Not Suitable for Work (NSFW) classification using deep neural network Caffe models.
Open nsfw model This repo contains code for running Not Suitable for Work (NSFW) classification deep neural network Caffe models. Please refer our blo
A list of NLP(Natural Language Processing) tutorials
NLP Tutorial A list of NLP(Natural Language Processing) tutorials built on PyTorch. Table of Contents A step-by-step tutorial on how to implement and
Official repository for "Orthogonal Projection Loss" (ICCV'21)
Orthogonal Projection Loss (ICCV'21) Kanchana Ranasinghe, Muzammal Naseer, Munawar Hayat, Salman Khan, & Fahad Shahbaz Khan Paper Link | Project Page
Code for "Learning Skeletal Graph Neural Networks for Hard 3D Pose Estimation" ICCV'21
Skeletal-GNN Code for "Learning Skeletal Graph Neural Networks for Hard 3D Pose Estimation" ICCV'21 Various deep learning techniques have been propose
A new codebase for Group Activity Recognition. It contains codes for ICCV 2021 paper: Spatio-Temporal Dynamic Inference Network for Group Activity Recognition and some other methods.
Spatio-Temporal Dynamic Inference Network for Group Activity Recognition The source codes for ICCV2021 Paper: Spatio-Temporal Dynamic Inference Networ
Train Scene Graph Generation for Visual Genome and GQA in PyTorch = 1.2 with improved zero and few-shot generalization.
Scene Graph Generation Object Detections Ground truth Scene Graph Generated Scene Graph In this visualization, woman sitting on rock is a zero-shot tr
This project hosts the code for implementing the ISAL algorithm for object detection and image classification
Influence Selection for Active Learning (ISAL) This project hosts the code for implementing the ISAL algorithm for object detection and image classifi
python 93% acc. CNN Dogs Vs Cats ( Pytorch )
English | 简体中文(测试中...敬请期待) Cnn-Classification-Dog-Vs-Cat 猫狗辨别 (pytorch版本) CNN Resnet18 的猫狗分类器,基于ResNet及其变体网路系列,对于一般的图像识别任务表现优异,模型精准度高达93%(小型样本)。 项目制作于
A library for graph deep learning research
Documentation | Paper [JMLR] | Tutorials | Benchmarks | Examples DIG: Dive into Graphs is a turnkey library for graph deep learning research. Why DIG?
A Telegram crawler to search groups and channels automatically and collect any type of data from them.
Introduction This is a crawler I wrote in Python using the APIs of Telethon months ago. This tool was not intended to be publicly available for a numb
Find graph motifs using intuitive notation
d o t m o t i f Find graph motifs using intuitive notation DotMotif is a library that identifies subgraphs or motifs in a large graph. It looks like t
Official Repsoitory for "Mish: A Self Regularized Non-Monotonic Neural Activation Function" [BMVC 2020]
Mish: Self Regularized Non-Monotonic Activation Function BMVC 2020 (Official Paper) Notes: (Click to expand) A considerably faster version based on CU
Pytorch implementations of Bayes By Backprop, MC Dropout, SGLD, the Local Reparametrization Trick, KF-Laplace, SG-HMC and more
Bayesian Neural Networks Pytorch implementations for the following approximate inference methods: Bayes by Backprop Bayes by Backprop + Local Reparame
Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.
Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.
Convolutional Neural Networks for Sentence Classification
Convolutional Neural Networks for Sentence Classification Code for the paper Convolutional Neural Networks for Sentence Classification (EMNLP 2014). R
NLP techniques such as named entity recognition, sentiment analysis, topic modeling, text classification with Python to predict sentiment and rating of drug from user reviews.
This file contains the following documents sumbited for Baruch CIS9665 group 9 fall 2021. 1. Dataset: drug_reviews.csv 2. python codes for text classi
Code for paper "Multi-level Disentanglement Graph Neural Network"
Multi-level Disentanglement Graph Neural Network (MD-GNN) This is a PyTorch implementation of the MD-GNN, and the code includes the following modules:
CIFAR-10 Photo Classification
Image-Classification CIFAR-10 Photo Classification CIFAR-10_Dataset_Classfication CIFAR-10 Photo Classification Dataset CIFAR is an acronym that stand
Go from graph data to a secure and interactive visual graph app in 15 minutes. Batteries-included self-hosting of graph data apps with Streamlit, Graphistry, RAPIDS, and more!
✔️ Linux ✔️ OS X ❌ Windows (#39) Welcome to graph-app-kit Turn your graph data into a secure and interactive visual graph app in 15 minutes! Why This
An image classification app boilerplate to serve your deep learning models asap!
Image 🖼 Classification App Boilerplate Have you been puzzled by tons of videos, blogs and other resources on the internet and don't know where and ho
👑 spaCy building blocks and visualizers for Streamlit apps
spacy-streamlit: spaCy building blocks for Streamlit apps This package contains utilities for visualizing spaCy models and building interactive spaCy-
To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.
To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.
Machine learning library for fast and efficient Gaussian mixture models
This repository contains code which implements the Stochastic Gaussian Mixture Model (S-GMM) for event-based datasets Dependencies CMake Premake4 Blaz
Calibrated Hyperspectral Image Reconstruction via Graph-based Self-Tuning Network.
mask-uncertainty-in-HSI This repository contains the testing code and pre-trained models for the paper Calibrated Hyperspectral Image Reconstruction v
Fast Learning of MNL Model From General Partial Rankings with Application to Network Formation Modeling
Fast-Partial-Ranking-MNL This repo provides a PyTorch implementation for the CopulaGNN models as described in the following paper: Fast Learning of MN
A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron.
The GatedTabTransformer. A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron. C
This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Prediction Graph Neural Network Model for Bike Sharing Systems".
cluster-link-prediction This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Predict
Fashion Entity Classification
Fashion-Entity-Classification - Fashion-MNIST is a dataset of Zalando's article images—consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grayscale image, associated with a label from 10 classes. Zalando intends Fashion-MNIST to serve as a direct drop-in replacement for the original MNIST dataset for benchmarking machine learning algorithms. It shares the same image size and structure of training and testing splits.
NLP-Project - Used an API to scrape 2000 reddit posts, then used NLP analysis and created a classification model to mixed succcess
Project 3: Web APIs & NLP Problem Statement How do r/Libertarian and r/Neoliberal differ on Biden post-inaguration? The goal of the project is to see
Glyph-graph - A simple, yet versatile, package for graphing equations on a 2-dimensional text canvas
Glyth Graph Revision for 0.01 A simple, yet versatile, package for graphing equations on a 2-dimensional text canvas List of contents: Brief Introduct
LightningFSL: Pytorch-Lightning implementations of Few-Shot Learning models.
LightningFSL: Few-Shot Learning with Pytorch-Lightning In this repo, a number of pytorch-lightning implementations of FSL algorithms are provided, inc
LSTM based Sentiment Classification using Tensorflow - Amazon Reviews Rating
LSTM based Sentiment Classification using Tensorflow - Amazon Reviews Rating (Dataset) The dataset is from Amazon Review Data (2018)
Simple-Image-Classification - Simple Image Classification Code (PyTorch)
Simple-Image-Classification Simple Image Classification Code (PyTorch) Yechan Kim This repository contains: Python3 / Pytorch code for multi-class ima
Awesome Graph Classification - A collection of important graph embedding, classification and representation learning papers with implementations.
A collection of graph classification methods, covering embedding, deep learning, graph kernel and factorization papers
AutoGluon: AutoML for Text, Image, and Tabular Data
AutoML for Text, Image, and Tabular Data AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in yo
Mememoji - A facial expression classification system that recognizes 6 basic emotions: happy, sad, surprise, fear, anger and neutral.
a project built with deep convolutional neural network and ❤️ Table of Contents Motivation The Database The Model 3.1 Input Layer 3.2 Convolutional La
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation Created by Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas from Sta
Automatic library of congress classification, using word embeddings from book titles and synopses.
Automatic Library of Congress Classification The Library of Congress Classification (LCC) is a comprehensive classification system that was first deve
Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have undergone breast cancer surgery.
Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have undergone breast cancer surgery.
ADCS - Automatic Defect Classification System (ADCS) for SSMC
Table of Contents Table of Contents ADCS Overview Summary Operator's Guide Demo System Design System Logic Training Mode Production System Flow Folder
Graph-total-spanning-trees - A Python script to get total number of Spanning Trees in a Graph
Total number of Spanning Trees in a Graph This is a python script just written f