226 Repositories
Python kernel-methods Libraries
Object-oriented programming (OOP) is a method of structuring a program by bundling related properties and behaviors into individual objects. In this tutorial, you’ll learn the basics of object-oriented programming in Python.
06_Python_Object_Class Introduction 👋 Objected oriented programming as a discipline has gained a universal following among developers. Python, an in-
Data types specify the different sizes and values that can be stored in the variable. For example, Python stores numbers, strings, and a list of values using different data types. Learn different types of Python data types along with their respective in-built functions and methods.
02_Python_Datatypes Introduction 👋 Data types specify the different sizes and values that can be stored in the variable. For example, Python stores n
Data stream analytics: Implement online learning methods to address concept drift in data streams using the River library. Code for the paper entitled "PWPAE: An Ensemble Framework for Concept Drift Adaptation in IoT Data Streams" accepted in IEEE GlobeCom 2021.
PWPAE-Concept-Drift-Detection-and-Adaptation This is the code for the paper entitled "PWPAE: An Ensemble Framework for Concept Drift Adaptation in IoT
Evaluation and Benchmarking of Speech Super-resolution Methods
Speech Super-resolution Evaluation and Benchmarking What this repo do: A toolbox for the evaluation of speech super-resolution algorithms. Unify the e
codebase for "A Theory of the Inductive Bias and Generalization of Kernel Regression and Wide Neural Networks"
Eigenlearning This repo contains code for replicating the experiments of the paper A Theory of the Inductive Bias and Generalization of Kernel Regress
Picasso: a methods for embedding points in 2D in a way that respects distances while fitting a user-specified shape.
Picasso Code to generate Picasso embeddings of any input matrix. Picasso maps the points of an input matrix to user-defined, n-dimensional shape coord
Princeton NLP's pre-training library based on fairseq with DeepSpeed kernel integration 🚃
This repository provides a library for efficient training of masked language models (MLM), built with fairseq. We fork fairseq to give researchers mor
Official implementation of Unfolded Deep Kernel Estimation for Blind Image Super-resolution.
Unfolded Deep Kernel Estimation for Blind Image Super-resolution Hongyi Zheng, Hongwei Yong, Lei Zhang, "Unfolded Deep Kernel Estimation for Blind Ima
Best DDoS Attack Script Python3, Cyber Attack With 40 Methods
MXDDoS - DDoS Attack Script With 40 Methods (Code Lang - Python 3) Please Don't Attack '.gov' and '.ir' Websites :) Features And Methods 💣 Layer7 GET
PyTorch implementation for the paper Pseudo Numerical Methods for Diffusion Models on Manifolds
Pseudo Numerical Methods for Diffusion Models on Manifolds (PNDM) This repo is the official PyTorch implementation for the paper Pseudo Numerical Meth
Map Ookla server locations as a Kernel Density Estimation (KDE) geographic map plot.
Ookla Server KDE Plotting This notebook was created to map Ookla server locations as a Kernel Density Estimation (KDE) geographic map plot. Currently,
Different steganography methods with examples and my own small image database
literally-the-most-useless-project [Different steganography methods with examples and my own small image database] This project currently contains thr
Crowd-Kit is a powerful Python library that implements commonly-used aggregation methods for crowdsourced annotation and offers the relevant metrics and datasets
Crowd-Kit: Computational Quality Control for Crowdsourcing Documentation Crowd-Kit is a powerful Python library that implements commonly-used aggregat
PacketPy is an open-source solution for stress testing network devices using different testing methods
PacketPy About PacketPy is an open-source solution for stress testing network devices using different testing methods. Currently, there are only two c
A python scripts that uses 3 different feature extraction methods such as SIFT, SURF and ORB to find a book in a video clip and project trailer of a movie based on that book, on to it.
A python scripts that uses 3 different feature extraction methods such as SIFT, SURF and ORB to find a book in a video clip and project trailer of a movie based on that book, on to it.
This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs)
Description This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs) in [Gardy et
Our product DrLeaf which not only makes the work easier but also reduces the effort and expenditure of the farmer to identify the disease and its treatment methods.
Our product DrLeaf which not only makes the work easier but also reduces the effort and expenditure of the farmer to identify the disease and its treatment methods. We have to upload the image of an affected plant’s leaf through our website and our plant disease prediction model predicts and returns the disease name. And along with the disease name, we also provide the best suitable methods to cure the disease.
A Python Jupyter Kernel in Slack. Just send Python code as a message.
Slack IPython bot 🤯 One Slack bot to rule them all. PyBot. Just send Python code as a message. Install pip install slack-ipython To start the bot, si
Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set
Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set This is the repository for the Deep Learning proje
Using NumPy to solve the equations of fluid mechanics together with Finite Differences, explicit time stepping and Chorin's Projection methods
Computational Fluid Dynamics in Python Using NumPy to solve the equations of fluid mechanics 🌊 🌊 🌊 together with Finite Differences, explicit time
On the adaptation of recurrent neural networks for system identification
On the adaptation of recurrent neural networks for system identification This repository contains the Python code to reproduce the results of the pape
Collections for the lasted paper about multi-view clustering methods (papers, codes)
Multi-View Clustering Papers Collections for the lasted paper about multi-view clustering methods (papers, codes). There also exists some repositories
Snek-test - An operating system kernel made in python and assembly
pythonOS An operating system kernel made in python and assembly Wait what? It us
Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution
Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution Figure: Example visualization of the method and baseline as a
A mini-course offered to Undergrad chemistry students
The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th
Proof of concept of CVE-2022-21907 Double Free in http.sys driver, triggering a kernel crash on IIS servers
CVE-2022-21907 - Double Free in http.sys driver Summary An unauthenticated attacker can send an HTTP request with an "Accept-Encoding" HTTP request he
Official PyTorch implementation of Time-aware Large Kernel (TaLK) Convolutions (ICML 2020)
Time-aware Large Kernel (TaLK) Convolutions (Lioutas et al., 2020) This repository contains the source code, pre-trained models, as well as instructio
Self-Supervised Methods for Noise-Removal
SSMNR | Self-Supervised Methods for Noise Removal Image denoising is the task of removing noise from an image, which can be formulated as the task of
PEPit is a package enabling computer-assisted worst-case analyses of first-order optimization methods.
PEPit: Performance Estimation in Python This open source Python library provides a generic way to use PEP framework in Python. Performance estimation
Fully Adaptive Bayesian Algorithm for Data Analysis (FABADA) is a new approach of noise reduction methods. In this repository is shown the package developed for this new method based on \citepaper.
Fully Adaptive Bayesian Algorithm for Data Analysis FABADA FABADA is a novel non-parametric noise reduction technique which arise from the point of vi
Course on computational design, non-linear optimization, and dynamics of soft systems at UIUC.
Computational Design and Dynamics of Soft Systems · This is a repository that contains the source code for generating the lecture notes, handouts, exe
Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.
Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.
Fake News Detection Using Machine Learning Methods
Fake-News-Detection-Using-Machine-Learning-Methods Fake news is always a real and dangerous issue. However, with the presence and abundance of various
This repository collects 100 papers related to negative sampling methods.
Negative-Sampling-Paper This repository collects 100 papers related to negative sampling methods, covering multiple research fields such as Recommenda
A Haskell kernel for IPython.
IHaskell You can now try IHaskell directly in your browser at CoCalc or mybinder.org. Alternatively, watch a talk and demo showing off IHaskell featur
Chess reinforcement learning by AlphaGo Zero methods.
About Chess reinforcement learning by AlphaGo Zero methods. This project is based on these main resources: DeepMind's Oct 19th publication: Mastering
🎃 Core identification module of AI powerful point reading system platform.
ppReader-Kernel Intro Core identification module of AI powerful point reading system platform. Usage 硬件: Windows10、GPU:nvdia GTX 1060 、普通RBG相机 软件: con
YT-Spammer-Purge - Allows you easily scan for and delete scam comments using several methods
YouTube Spammer Purge What Is This? - Allows you to filter and search for spamme
Methods to get the probability of a changepoint in a time series.
Bayesian Changepoint Detection Methods to get the probability of a changepoint in a time series. Both online and offline methods are available. Read t
An example of time series augmentation methods with Keras
Time Series Augmentation This is a collection of time series data augmentation methods and an example use using Keras. News 2020/04/16: Repository Cre
A general and strong 3D object detection codebase that supports more methods, datasets and tools (debugging, recording and analysis).
ALLINONE-Det ALLINONE-Det is a general and strong 3D object detection codebase built on OpenPCDet, which supports more methods, datasets and tools (de
A new codebase for Group Activity Recognition. It contains codes for ICCV 2021 paper: Spatio-Temporal Dynamic Inference Network for Group Activity Recognition and some other methods.
Spatio-Temporal Dynamic Inference Network for Group Activity Recognition The source codes for ICCV2021 Paper: Spatio-Temporal Dynamic Inference Networ
Modeling cumulative cases of Covid-19 in the US during the Covid 19 Delta wave using Bayesian methods.
Introduction The goal of this analysis is to find a model that fits the observed cumulative cases of COVID-19 in the US, starting in Mid-July 2021 and
Inject your config variables into methods, so they are as close to usage as possible
Inject your config variables into methods, so they are as close to usage as possible
SimpleDepthEstimation - An unified codebase for NN-based monocular depth estimation methods
SimpleDepthEstimation Introduction This is an unified codebase for NN-based monocular depth estimation methods, the framework is based on detectron2 (
Awesome Graph Classification - A collection of important graph embedding, classification and representation learning papers with implementations.
A collection of graph classification methods, covering embedding, deep learning, graph kernel and factorization papers
Implementation of hyperparameter optimization/tuning methods for machine learning & deep learning models
Hyperparameter Optimization of Machine Learning Algorithms This code provides a hyper-parameter optimization implementation for machine learning algor
Saliency - Framework-agnostic implementation for state-of-the-art saliency methods (XRAI, BlurIG, SmoothGrad, and more).
Saliency Methods 🔴 Now framework-agnostic! (Example core notebook) 🔴 🔗 For further explanation of the methods and more examples of the resulting ma
NumQMBasic - A mini-course offered to Undergrad physics students
The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th
JudeasRx - graphical app for doing personalized causal medicine using the methods invented by Judea Pearl et al.
JudeasRX Instructions Read the references given in the Theory and Notation section below Fire up the Jupyter Notebook judeas-rx.ipynb The notebook dra
Code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data by Minimizing Predictive Variance
Semi-supervised Deep Kernel Learning This is the code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data
Numerical Methods with Python, Numpy and Matplotlib
Numerical Bric-a-Brac Collections of numerical techniques with Python and standard computational packages (Numpy, SciPy, Numba, Matplotlib ...). Diffe
Finite difference solution of 2D Poisson equation. Can handle Dirichlet, Neumann and mixed boundary conditions.
Poisson-solver-2D Finite difference solution of 2D Poisson equation Current version can handle Dirichlet, Neumann, and mixed (combination of Dirichlet
3D-Lorenz-Attractor-simulation-with-python
3D-Lorenz-Attractor-simulation-with-python Animação 3D da trajetória do Atrator de Lorenz, implementada em Python usando o método de Runge-Kutta de 4ª
A Bot to Track Kernel Upstreams from kernel.org and Post it on Telegram Channel
Channel Kernel Tracker is the channel where the bot will be sending the updates in. Introduction This is a Telegram Bot to Track Kernel Upstreams kern
Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods."
pv_predict_unet-lstm Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods." IEEE Transactions
Flask-Diamond is a batteries-included Flask framework.
Flask-Diamond Flask-Diamond is a batteries-included Python Flask framework, sortof like Django but radically decomposable. Flask-Diamond offers some o
Denial Attacks by Various Methods
Denial Service Attack Denial Attacks by Various Methods IIIIIIIIIIIIIIIIIIII PPPPPPPPPPPPPPPPP VVVVVVVV VVVVVVVV I::
pythonOS: An operating system kernel made in python and assembly
pythonOS An operating system kernel made in python and assembly Wait what? It uses a custom compiler called snek that implements a part of python3.9 (
Python Jupyter kernel using Poetry for reproducible notebooks
Poetry Kernel Use per-directory Poetry environments to run Jupyter kernels. No need to install a Jupyter kernel per Python virtual environment! The id
TeachMyAgent is a testbed platform for Automatic Curriculum Learning methods in Deep RL.
TeachMyAgent: a Benchmark for Automatic Curriculum Learning in Deep RL Paper Website Documentation TeachMyAgent is a testbed platform for Automatic Cu
Pytorch Lightning Implementation of SC-Depth Methods.
SC_Depth_pl: This is a pytorch lightning implementation of SC-Depth (V1, V2) for self-supervised learning of monocular depth from video. In the V1 (IJ
Machine learning algorithms for many-body quantum systems
NetKet NetKet is an open-source project delivering cutting-edge methods for the study of many-body quantum systems with artificial neural networks and
Find exposed API keys based on RegEx and get exploitation methods for some of keys that are found
dora Features Blazing fast as we are using ripgrep in backend Exploit/PoC steps for many of the API key, allowing to write a good report for bug bount
A set of demo of deploying a Machine Learning Model in production using various methods
Machine Learning Model in Production This git is for those who have concern about serving your machine learning model to production. Overview The tuto
nettrace is a powerful tool to trace network packet and diagnose network problem inside kernel.
nettrace nettrace is is a powerful tool to trace network packet and diagnose network problem inside kernel on TencentOS. It make use of eBPF and BCC.
Fast methods to work with hydro- and topography data in pure Python.
PyFlwDir Intro PyFlwDir contains a series of methods to work with gridded DEM and flow direction datasets, which are key to many workflows in many ear
Fastshap: A fast, approximate shap kernel
fastshap: A fast, approximate shap kernel fastshap was designed to be: Fast Calculating shap values can take an extremely long time. fastshap utilizes
Package to provide translation methods for pyramid, and means to reload translations without stopping the application
Package to provide translation methods for pyramid, and means to reload translations without stopping the application
Computational Methods Course at UdeA. Forked and size reduced from:
Computational Methods for Physics & Astronomy Book version at: https://restrepo.github.io/ComputationalMethods by: Sebastian Bustamante 2014/2015 Dieg
PyDEns is a framework for solving Ordinary and Partial Differential Equations (ODEs & PDEs) using neural networks
PyDEns PyDEns is a framework for solving Ordinary and Partial Differential Equations (ODEs & PDEs) using neural networks. With PyDEns one can solve PD
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"
LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and
A library for researching neural networks compression and acceleration methods.
A library for researching neural networks compression and acceleration methods.
An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects different compression algorithms have.
ImageCompressionSimulation An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects o
The source code for Adaptive Kernel Graph Neural Network at AAAI2022
AKGNN The source code for Adaptive Kernel Graph Neural Network at AAAI2022. Please cite our paper if you think our work is helpful to you: @inproceedi
Code accompanying "Adaptive Methods for Aggregated Domain Generalization"
Adaptive Methods for Aggregated Domain Generalization (AdaClust) Official Pytorch Implementation of Adaptive Methods for Aggregated Domain Generalizat
Code for the paper “The Peril of Popular Deep Learning Uncertainty Estimation Methods”
Uncertainty Estimation Methods Code for the paper “The Peril of Popular Deep Learning Uncertainty Estimation Methods” Reference If you use this code,
Evaluating saliency methods on artificial data with different background types
Evaluating saliency methods on artificial data with different background types This repository contains the relevant code for the MedNeurips 2021 subm
An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.
An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.
Tensorflow 2 implementations of the C-SimCLR and C-BYOL self-supervised visual representation methods from "Compressive Visual Representations" (NeurIPS 2021)
Compressive Visual Representations This repository contains the source code for our paper, Compressive Visual Representations. We developed informatio
[CVPR 2020] Rethinking Class-Balanced Methods for Long-Tailed Visual Recognition from a Domain Adaptation Perspective
Rethinking Class-Balanced Methods for Long-Tailed Visual Recognition from a Domain Adaptation Perspective [Arxiv] This is PyTorch implementation of th
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"
LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and
Lattice methods in TensorFlow
TensorFlow Lattice TensorFlow Lattice is a library that implements constrained and interpretable lattice based models. It is an implementation of Mono
Allows you to canibalize methods from classes effectively implementing trait-oriented programming
About This package enables code reuse in non-inheritance way from existing classes, effectively implementing traits-oriented programming pattern. Stor
Confidence Propagation Cluster aims to replace NMS-based methods as a better box fusion framework in 2D/3D Object detection
CP-Cluster Confidence Propagation Cluster aims to replace NMS-based methods as a better box fusion framework in 2D/3D Object detection, Instance Segme
An echo kernel for JupyterLite
jupyterlite-echo-kernel An echo kernel for JupyterLite. Requirements JupyterLite = 0.1.0a10 Install To install the extension, execute: pip install ju
IDA Pro Python plugin to analyze and annotate Linux kernel alternatives
About This is an IDA Pro (Interactive Disassembler) plugin allowing to automatically analyze and annotate Linux kernel alternatives (content of .altin
Self-Supervised Learning with Kernel Dependence Maximization
Self-Supervised Learning with Kernel Dependence Maximization This is the code for SSL-HSIC, a self-supervised learning loss proposed in the paper Self
A package with multiple bias correction methods for climatic variables, including the QM, DQM, QDM, UQM, and SDM methods
A package with multiple bias correction methods for climatic variables, including the QM, DQM, QDM, UQM, and SDM methods
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"
This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur
Code base for NeurIPS 2021 publication titled Kernel Functional Optimisation (KFO)
KernelFunctionalOptimisation Code base for NeurIPS 2021 publication titled Kernel Functional Optimisation (KFO) We have conducted all our experiments
A iot Bike sytem based on RaspberryPi, Ardiuino
Cyclic 's Kernel ---- A iot Bike sytem based on RaspberryPi, Ardiuino, etc 0x1 What is This? Cyclic 's Kernel is an independent System With self-produ
FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows
FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows.
Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method.
Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method.
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"
This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur
Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment".
#backdoor-HSIC (bd_HSIC) Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment". To generate
Kernel Point Convolutions
Created by Hugues THOMAS Introduction Update 27/04/2020: New PyTorch implementation available. With SemanticKitti, and Windows supported. This reposit
Paper: Cross-View Kernel Similarity Metric Learning Using Pairwise Constraints for Person Re-identification
Cross-View Kernel Similarity Metric Learning Using Pairwise Constraints for Person Re-identification T M Feroz Ali, Subhasis Chaudhuri, ICVGIP-20-21
Awesome Deep Graph Clustering is a collection of SOTA, novel deep graph clustering methods
ADGC: Awesome Deep Graph Clustering ADGC is a collection of state-of-the-art (SOTA), novel deep graph clustering methods (papers, codes and datasets).
Machine Learning Framework for Operating Systems - Brings ML to Linux kernel
KML: A Machine Learning Framework for Operating Systems & Storage Systems Storage systems and their OS components are designed to accommodate a wide v