240 Repositories
Python kernel-ridge-regression Libraries
Repository for RNNs using TensorFlow and Keras - LSTM and GRU Implementation from Scratch - Simple Classification and Regression Problem using RNNs
RNN 01- RNN_Classification Simple RNN training for classification task of 3 signal: Sine, Square, Triangle. 02- RNN_Regression Simple RNN training for
[CVPR 2022 Oral] Balanced MSE for Imbalanced Visual Regression https://arxiv.org/abs/2203.16427
Balanced MSE Code for the paper: Balanced MSE for Imbalanced Visual Regression Jiawei Ren, Mingyuan Zhang, Cunjun Yu, Ziwei Liu CVPR 2022 (Oral) News
I will implement Fastai in each projects present in this repository.
DEEP LEARNING FOR CODERS WITH FASTAI AND PYTORCH The repository contains a list of the projects which I have worked on while reading the book Deep Lea
This repository contains implementations of all Machine Learning Algorithms from scratch in Python. Mathematics required for ML and many projects have also been included.
👏 Pre- requisites to Machine Learning
torchlm is aims to build a high level pipeline for face landmarks detection, it supports training, evaluating, exporting, inference(Python/C++) and 100+ data augmentations
💎A high level pipeline for face landmarks detection, supports training, evaluating, exporting, inference and 100+ data augmentations, compatible with torchvision and albumentations, can easily install with pip.
Get started with Machine Learning with Python - An introduction with Python programming examples
Machine Learning With Python Get started with Machine Learning with Python An engaging introduction to Machine Learning with Python TL;DR Download all
codebase for "A Theory of the Inductive Bias and Generalization of Kernel Regression and Wide Neural Networks"
Eigenlearning This repo contains code for replicating the experiments of the paper A Theory of the Inductive Bias and Generalization of Kernel Regress
Princeton NLP's pre-training library based on fairseq with DeepSpeed kernel integration 🚃
This repository provides a library for efficient training of masked language models (MLM), built with fairseq. We fork fairseq to give researchers mor
Forward Propagation, Backward Regression and Pose Association for Hand Tracking in the Wild (CVPR 2022)
HandLer This repository contains the code and data for the following paper: Forward Propagation, Backward Regression, and Pose Association for Hand Tr
SCALoss: Side and Corner Aligned Loss for Bounding Box Regression (AAAI2022).
SCALoss PyTorch implementation of the paper "SCALoss: Side and Corner Aligned Loss for Bounding Box Regression" (AAAI 2022). Introduction IoU-based lo
Official implementation of Unfolded Deep Kernel Estimation for Blind Image Super-resolution.
Unfolded Deep Kernel Estimation for Blind Image Super-resolution Hongyi Zheng, Hongwei Yong, Lei Zhang, "Unfolded Deep Kernel Estimation for Blind Ima
Transformers-regression - Regression Bugs Are In Your Model! Measuring, Reducing and Analyzing Regressions In NLP Model Updates
Regression Free Model Update Code for the paper: Regression Bugs Are In Your Mod
Vaex library for Big Data Analytics of an Airline dataset
Vaex-Big-Data-Analytics-for-Airline-data A Python notebook (ipynb) created in Jupyter Notebook, which utilizes the Vaex library for Big Data Analytics
Map Ookla server locations as a Kernel Density Estimation (KDE) geographic map plot.
Ookla Server KDE Plotting This notebook was created to map Ookla server locations as a Kernel Density Estimation (KDE) geographic map plot. Currently,
Image-to-image regression with uncertainty quantification in PyTorch
Image-to-image regression with uncertainty quantification in PyTorch. Take any dataset and train a model to regress images to images with rigorous, distribution-free uncertainty quantification.
To build a regression model to predict the concrete compressive strength based on the different features in the training data.
Cement-Strength-Prediction Problem Statement To build a regression model to predict the concrete compressive strength based on the different features
Artificial Neural network regression model to predict the energy output in a combined cycle power plant.
Energy_Output_Predictor Artificial Neural network regression model to predict the energy output in a combined cycle power plant. Abstract Energy outpu
Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression
Regression Transformer Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression . Development se
Multiple Linear Regression using the LinearRegression class from sklearn.linear_model library
Multiple-Linear-Regression-master - A python program to implement Multiple Linear Regression using the LinearRegression class from sklearn.linear model library
Conducted ANOVA and Logistic regression analysis using matplot library to visualize the result.
Intro-to-Data-Science Conducted ANOVA and Logistic regression analysis. Project ANOVA The main aim of this project is to perform One-Way ANOVA analysi
This machine learning model was developed for House Prices
This machine learning model was developed for House Prices - Advanced Regression Techniques competition in Kaggle by using several machine learning models such as Random Forest, XGBoost and LightGBM.
Built various Machine Learning algorithms (Logistic Regression, Random Forest, KNN, Gradient Boosting and XGBoost. etc)
Built various Machine Learning algorithms (Logistic Regression, Random Forest, KNN, Gradient Boosting and XGBoost. etc). Structured a custom ensemble model and a neural network. Found a outperformed model for heart failure prediction accuracy of 88 percent.
This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs)
Description This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs) in [Gardy et
Predicting a person's gender based on their weight and height
Logistic Regression Advanced Case Study Gender Classification: Predicting a person's gender based on their weight and height 1. Introduction We turn o
Using Logistic Regression and classifiers of the dataset to produce an accurate recall, f-1 and precision score
Using Logistic Regression and classifiers of the dataset to produce an accurate recall, f-1 and precision score
A Python Jupyter Kernel in Slack. Just send Python code as a message.
Slack IPython bot 🤯 One Slack bot to rule them all. PyBot. Just send Python code as a message. Install pip install slack-ipython To start the bot, si
An Approach to Explore Logistic Regression Models
User-centered Regression An Approach to Explore Logistic Regression Models This tool applies the potential of Attribute-RadViz in identifying correlat
On the adaptation of recurrent neural networks for system identification
On the adaptation of recurrent neural networks for system identification This repository contains the Python code to reproduce the results of the pape
Title: Graduate-Admissions-Predictor
The purpose of this project is create a predictive model capable of identifying the probability of a person securing an admit based on their personal profile parameters. Simplified visualisations have been created for understanding the data. 80% accuracy was achieved on the test set.
The Dual Memory is build from a simple CNN for the deep memory and Linear Regression fro the fast Memory
Simple-DMA a simple Dual Memory Architecture for classifications. based on the paper Dual-Memory Deep Learning Architectures for Lifelong Learning of
Hitters Linear Regression - Hitters Linear Regression With Python
Hitters_Linear_Regression Kullanacağımız veri seti Carnegie Mellon Üniversitesi'
Snek-test - An operating system kernel made in python and assembly
pythonOS An operating system kernel made in python and assembly Wait what? It us
Proof of concept of CVE-2022-21907 Double Free in http.sys driver, triggering a kernel crash on IIS servers
CVE-2022-21907 - Double Free in http.sys driver Summary An unauthenticated attacker can send an HTTP request with an "Accept-Encoding" HTTP request he
Used Logistic Regression, Random Forest, and XGBoost to predict the outcome of Search & Destroy games from the Call of Duty World League for the 2018 and 2019 seasons.
Call of Duty World League: Search & Destroy Outcome Predictions Growing up as an avid Call of Duty player, I was always curious about what factors led
Implementation of ML models like Decision tree, Naive Bayes, Logistic Regression and many other
ML_Model_implementaion Implementation of ML models like Decision tree, Naive Bayes, Logistic Regression and many other dectree_model: Implementation o
Official PyTorch implementation of Time-aware Large Kernel (TaLK) Convolutions (ICML 2020)
Time-aware Large Kernel (TaLK) Convolutions (Lioutas et al., 2020) This repository contains the source code, pre-trained models, as well as instructio
Node-level Graph Regression with Deep Gaussian Process Models
Node-level Graph Regression with Deep Gaussian Process Models Prerequests our implementation is mainly based on tensorflow 1.x and gpflow 1.x: python
Source code for the BMVC-2021 paper "SimReg: Regression as a Simple Yet Effective Tool for Self-supervised Knowledge Distillation".
SimReg: A Simple Regression Based Framework for Self-supervised Knowledge Distillation Source code for the paper "SimReg: Regression as a Simple Yet E
Sentiment-Analysis and EDA on the IMDB Movie Review Dataset
Sentiment-Analysis and EDA on the IMDB Movie Review Dataset The main part of the work focuses on the exploration and study of different approaches whi
To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types
To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types, from a Database Taken From Dr. Wolberg reports his Clinic Cases.
A Haskell kernel for IPython.
IHaskell You can now try IHaskell directly in your browser at CoCalc or mybinder.org. Alternatively, watch a talk and demo showing off IHaskell featur
Python Machine Learning Jupyter Notebooks (ML website)
Python Machine Learning Jupyter Notebooks (ML website) Dr. Tirthajyoti Sarkar, Fremont, California (Please feel free to connect on LinkedIn here) Also
🎃 Core identification module of AI powerful point reading system platform.
ppReader-Kernel Intro Core identification module of AI powerful point reading system platform. Usage 硬件: Windows10、GPU:nvdia GTX 1060 、普通RBG相机 软件: con
Specification language for generating Generalized Linear Models (with or without mixed effects) from conceptual models
tisane Tisane: Authoring Statistical Models via Formal Reasoning from Conceptual and Data Relationships TL;DR: Analysts can use Tisane to author gener
This repo contains the implementation of YOLOv2 in Keras with Tensorflow backend.
Easy training on custom dataset. Various backends (MobileNet and SqueezeNet) supported. A YOLO demo to detect raccoon run entirely in brower is accessible at https://git.io/vF7vI (not on Windows).
🙄 Difficult algorithm, Simple code.
🎉TensorFlow2.0-Examples🎉! "Talk is cheap, show me the code." ----- Linus Torvalds Created by YunYang1994 This tutorial was designed for easily divin
Deep learning PyTorch library for time series forecasting, classification, and anomaly detection
Deep learning for time series forecasting Flow forecast is an open-source deep learning for time series forecasting framework. It provides all the lat
Survival analysis in Python
What is survival analysis and why should I learn it? Survival analysis was originally developed and applied heavily by the actuarial and medical commu
General Assembly's 2015 Data Science course in Washington, DC
DAT8 Course Repository Course materials for General Assembly's Data Science course in Washington, DC (8/18/15 - 10/29/15). Instructor: Kevin Markham (
Pytorch implementations of Bayes By Backprop, MC Dropout, SGLD, the Local Reparametrization Trick, KF-Laplace, SG-HMC and more
Bayesian Neural Networks Pytorch implementations for the following approximate inference methods: Bayes by Backprop Bayes by Backprop + Local Reparame
Masked regression code - Masked Regression
Masked Regression MR - Python Implementation This repositery provides a python implementation of MR (Masked Regression). MR can efficiently synthesize
Iowa Project - My second project done at General Assembly, focused on feature engineering and understanding Linear Regression as a concept
Project 2 - Ames Housing Data and Kaggle Challenge PROBLEM STATEMENT Inferring or Predicting? What's more valuable for a housing model? When creating
Awesome Graph Classification - A collection of important graph embedding, classification and representation learning papers with implementations.
A collection of graph classification methods, covering embedding, deep learning, graph kernel and factorization papers
LinearRegression2 Tvads and CarSales
LinearRegression2_Tvads_and_CarSales This project infers the insight that how the TV ads for cars and car Sales are being linked with each other. It i
Price-Prediction-For-a-Dream-Home - A machine learning based linear regression trained model for house price prediction.
Price-Prediction-For-a-Dream-Home ROADMAP TO THIS LINEAR REGRESSION BASED HOUSE PRICE PREDICTION PREDICTION MODEL Import all the dependencies of the p
Image-popularity-score - A novel deep regression method for image scoring.
Image-popularity-score - A novel deep regression method for image scoring.
Constrained Logistic Regression - How to apply specific constraints to logistic regression's coefficients
Constrained Logistic Regression Sample implementation of constructing a logistic regression with given ranges on each of the feature's coefficients (v
Flask app to predict daily radiation from the time series of Solcast from Islamabad, Pakistan
Solar-radiation-ISB-MLOps - Flask app to predict daily radiation from the time series of Solcast from Islamabad, Pakistan.
A minimal implementation of Gaussian process regression in PyTorch
pytorch-minimal-gaussian-process In search of truth, simplicity is needed. There exist heavy-weighted libraries, but as you know, we need to go bare b
Code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data by Minimizing Predictive Variance
Semi-supervised Deep Kernel Learning This is the code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data
A Python Package for Convex Regression and Frontier Estimation
pyStoNED pyStoNED is a Python package that provides functions for estimating multivariate convex regression, convex quantile regression, convex expect
A Bot to Track Kernel Upstreams from kernel.org and Post it on Telegram Channel
Channel Kernel Tracker is the channel where the bot will be sending the updates in. Introduction This is a Telegram Bot to Track Kernel Upstreams kern
Python script that analyses the given datasets and comes up with the best polynomial regression representation with the smallest polynomial degree possible
Python script that analyses the given datasets and comes up with the best polynomial regression representation with the smallest polynomial degree possible, to be the most reliable with the least complexity possible
Using Bayesian, KNN, Logistic Regression to classify spam and non-spam.
Make Sure the dataset file "spamData.mat" is in the folder spam\src Environment: Python --version = 3.7 Third Party: numpy, matplotlib, math, scipy
Data Model built using Logistic Regression Algorithm on Python.
Logistic-Regression Problem Statement: Your client is a retail banking institution. Term deposits are a major source of income for a bank. A term depo
Implemented four supervised learning Machine Learning algorithms
Implemented four supervised learning Machine Learning algorithms from an algorithmic family called Classification and Regression Trees (CARTs), details see README_Report.
pythonOS: An operating system kernel made in python and assembly
pythonOS An operating system kernel made in python and assembly Wait what? It uses a custom compiler called snek that implements a part of python3.9 (
Python Jupyter kernel using Poetry for reproducible notebooks
Poetry Kernel Use per-directory Poetry environments to run Jupyter kernels. No need to install a Jupyter kernel per Python virtual environment! The id
Decision Tree Regression algorithm implemented on Python from scratch.
Decision_Tree_Regression I implemented the decision tree regression algorithm on Python. Unlike regular linear regression, this algorithm is used when
Touca SDK for Python
Touca SDK For Python Touca helps you understand the true impact of your day to day code changes on the behavior and performance of your overall softwa
nettrace is a powerful tool to trace network packet and diagnose network problem inside kernel.
nettrace nettrace is is a powerful tool to trace network packet and diagnose network problem inside kernel on TencentOS. It make use of eBPF and BCC.
Fastshap: A fast, approximate shap kernel
fastshap: A fast, approximate shap kernel fastshap was designed to be: Fast Calculating shap values can take an extremely long time. fastshap utilizes
Synchrosqueezing, wavelet transforms, and time-frequency analysis in Python
Synchrosqueezing is a powerful reassignment method that focuses time-frequency representations, and allows extraction of instantaneous amplitudes and frequencies
DANet for Tabular data classification/ regression.
Deep Abstract Networks A pyTorch implementation for AAAI-2022 paper DANets: Deep Abstract Networks for Tabular Data Classification and Regression. Bri
Learning with Subset Stacking
Learning with Subset Stacking (LESS) LESS is a new supervised learning algorithm that is based on training many local estimators on subsets of a given
Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression
Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression We provide the code used in our paper "How Good are Low-Rank Approximation
codes for Self-paced Deep Regression Forests with Consideration on Ranking Fairness
Self-paced Deep Regression Forests with Consideration on Ranking Fairness This is official codes for paper Self-paced Deep Regression Forests with Con
Ml based project which uses regression technique to predict the price.
Price-Predictor Ml based project which uses regression technique to predict the price. I have used various regression models and finds the model with
a wrapper around pytest for executing tests to look for test flakiness and runtime regression
bubblewrap a wrapper around pytest for assessing flakiness and runtime regressions a cs implementations practice project How to Run: First, install de
The source code for Adaptive Kernel Graph Neural Network at AAAI2022
AKGNN The source code for Adaptive Kernel Graph Neural Network at AAAI2022. Please cite our paper if you think our work is helpful to you: @inproceedi
DANet for Tabular data classification/ regression.
Deep Abstract Networks A PyTorch code implemented for the submission DANets: Deep Abstract Networks for Tabular Data Classification and Regression. Do
The best solution of the Weather Prediction track in the Yandex Shifts challenge
yandex-shifts-weather The repository contains information about my solution for the Weather Prediction track in the Yandex Shifts challenge https://re
An echo kernel for JupyterLite
jupyterlite-echo-kernel An echo kernel for JupyterLite. Requirements JupyterLite = 0.1.0a10 Install To install the extension, execute: pip install ju
Air Pollution Prediction System using Linear Regression and ANN
AirPollution Pollution Weather Prediction System: Smart Outdoor Pollution Monitoring and Prediction for Healthy Breathing and Living Publication Link:
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation
Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici
ROMP: Monocular, One-stage, Regression of Multiple 3D People, ICCV21
Monocular, One-stage, Regression of Multiple 3D People ROMP, accepted by ICCV 2021, is a concise one-stage network for multi-person 3D mesh recovery f
IDA Pro Python plugin to analyze and annotate Linux kernel alternatives
About This is an IDA Pro (Interactive Disassembler) plugin allowing to automatically analyze and annotate Linux kernel alternatives (content of .altin
Simple API for UCI Machine Learning Dataset Repository (search, download, analyze)
A simple API for working with University of California, Irvine (UCI) Machine Learning (ML) repository Table of Contents Introduction About Page of the
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation
Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici
Self-Supervised Learning with Kernel Dependence Maximization
Self-Supervised Learning with Kernel Dependence Maximization This is the code for SSL-HSIC, a self-supervised learning loss proposed in the paper Self
Code base for NeurIPS 2021 publication titled Kernel Functional Optimisation (KFO)
KernelFunctionalOptimisation Code base for NeurIPS 2021 publication titled Kernel Functional Optimisation (KFO) We have conducted all our experiments
A iot Bike sytem based on RaspberryPi, Ardiuino
Cyclic 's Kernel ---- A iot Bike sytem based on RaspberryPi, Ardiuino, etc 0x1 What is This? Cyclic 's Kernel is an independent System With self-produ
Implementation of Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement Learning
advantage-weighted-regression Implementation of Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement Learning, by Peng et al. (
Predicting diabetes over a five year period using logistic regression and the Pima First-Nation dataset
Diabetes This script uses the Pima First Nations dataset to create a model to predict whether or not an individual will develop Diabetes Mellitus Type
Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment".
#backdoor-HSIC (bd_HSIC) Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment". To generate
A logistic regression model for health insurance purchasing prediction
Logistic_Regression_Model A logistic regression model for health insurance purchasing prediction This code is using these packages, so please make sur
Kernel Point Convolutions
Created by Hugues THOMAS Introduction Update 27/04/2020: New PyTorch implementation available. With SemanticKitti, and Windows supported. This reposit
Paper: Cross-View Kernel Similarity Metric Learning Using Pairwise Constraints for Person Re-identification
Cross-View Kernel Similarity Metric Learning Using Pairwise Constraints for Person Re-identification T M Feroz Ali, Subhasis Chaudhuri, ICVGIP-20-21
A linear regression model for house price prediction
Linear_Regression_Model A linear regression model for house price prediction. This code is using these packages, so please make sure your have install