270 Repositories
Python label-tree-classifiers Libraries
The official code for paper "R2D2: Recursive Transformer based on Differentiable Tree for Interpretable Hierarchical Language Modeling".
R2D2 This is the official code for paper titled "R2D2: Recursive Transformer based on Differentiable Tree for Interpretable Hierarchical Language Mode
Official implementation of paper "Query2Label: A Simple Transformer Way to Multi-Label Classification".
Introdunction This is the official implementation of the paper "Query2Label: A Simple Transformer Way to Multi-Label Classification". Abstract This pa
Implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training
SemCo The official pytorch implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training
Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021.
UniRE Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021. Requirements python: 3.7.6 pytorch: 1.8.1 transformers:
Label Mask for Multi-label Classification
LM-MLC 一种基于完型填空的多标签分类算法 1 前言 本文主要介绍本人在全球人工智能技术创新大赛【赛道一】设计的一种基于完型填空(模板)的多标签分类算法:LM-MLC,该算法拟合能力很强能感知标签关联性,在多个数据集上测试表明该算法与主流算法无显著性差异,在该比赛数据集上的dev效果很好,但是由
An implementation of the AlphaZero algorithm for Gomoku (also called Gobang or Five in a Row)
AlphaZero-Gomoku This is an implementation of the AlphaZero algorithm for playing the simple board game Gomoku (also called Gobang or Five in a Row) f
MONAI Label is a server-client system that facilitates interactive medical image annotation by using AI.
MONAI Label is a server-client system that facilitates interactive medical image annotation by using AI. It is an open-source and easy-to-install ecosystem that can run locally on a machine with one or two GPUs. Both server and client work on the same/different machine. However, initial support for multiple users is restricted. It shares the same principles with MONAI.
General Multi-label Image Classification with Transformers
General Multi-label Image Classification with Transformers Jack Lanchantin, Tianlu Wang, Vicente Ordóñez Román, Yanjun Qi Conference on Computer Visio
Wisdom Tree is a concentration app i am working on.
Wisdom Tree Wisdom Tree is a tui concentration app I am working on. Inspired by the wisdom tree in Plants vs. Zombies which gives in-game tips when it
Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition"
Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition", accepted at ACL 2021. For details of the model and experiments, please see our paper.
Official PyTorch Implementation of Embedding Transfer with Label Relaxation for Improved Metric Learning, CVPR 2021
Embedding Transfer with Label Relaxation for Improved Metric Learning Official PyTorch implementation of CVPR 2021 paper Embedding Transfer with Label
A python library to build Model Trees with Linear Models at the leaves.
A python library to build Model Trees with Linear Models at the leaves.
Shared Attention for Multi-label Zero-shot Learning
Shared Attention for Multi-label Zero-shot Learning Overview This repository contains the implementation of Shared Attention for Multi-label Zero-shot
Official Pytorch Implementation of: "Semantic Diversity Learning for Zero-Shot Multi-label Classification"(2021) paper
Semantic Diversity Learning for Zero-Shot Multi-label Classification Paper Official PyTorch Implementation Avi Ben-Cohen, Nadav Zamir, Emanuel Ben Bar
MPLP: Metapath-Based Label Propagation for Heterogenous Graphs
MPLP: Metapath-Based Label Propagation for Heterogenous Graphs Results on MAG240M Here, we demonstrate the following performance on the MAG240M datase
NAS Benchmark in "Prioritized Architecture Sampling with Monto-Carlo Tree Search", CVPR2021
NAS-Bench-Macro This repository includes the benchmark and code for NAS-Bench-Macro in paper "Prioritized Architecture Sampling with Monto-Carlo Tree
Multivariate Boosted TRee
Multivariate Boosted TRee What is MBTR MBTR is a python package for multivariate boosted tree regressors trained in parameter space. The package can h
Code for Graph-to-Tree Learning for Solving Math Word Problems (ACL 2020)
Graph-to-Tree Learning for Solving Math Word Problems PyTorch implementation of Graph based Math Word Problem solver described in our ACL 2020 paper G
MBTR is a python package for multivariate boosted tree regressors trained in parameter space.
MBTR is a python package for multivariate boosted tree regressors trained in parameter space.
Implementation of Online Label Smoothing in PyTorch
Online Label Smoothing Pytorch implementation of Online Label Smoothing (OLS) presented in Delving Deep into Label Smoothing. Introduction As the abst
To solve games using AI, we will introduce the concept of a game tree followed by minimax algorithm.
To solve games using AI, we will introduce the concept of a game tree followed by minimax algorithm.
PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb
PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb
Deep Image Search - AI-Based Image Search Engine
Deep Image Search is an AI-based image search engine that includes deep transfer learning features Extraction and tree-based vectorized search technique.
A tensorflow implementation of GCN-LPA
GCN-LPA This repository is the implementation of GCN-LPA (arXiv): Unifying Graph Convolutional Neural Networks and Label Propagation Hongwei Wang, Jur
Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.
Deep Image Search - AI-Based Image Search Engine Deep Image Search is an AI-based image search engine that includes deep transfer learning features Ex
(L2ID@CVPR2021) Boosting Co-teaching with Compression Regularization for Label Noise
Nested-Co-teaching (L2ID@CVPR2021) Pytorch implementation of paper "Boosting Co-teaching with Compression Regularization for Label Noise" [PDF] If our
gcptree - Like the unix tree command but for GCP Org Heirarchy
gcptree Like the unix tree command but for GCP Org Heirarchy. For a note on coloring, the org node is green, folders and blue, and projects that are n
Tilted Empirical Risk Minimization (ICLR '21)
Tilted Empirical Risk Minimization This repository contains the implementation for the paper Tilted Empirical Risk Minimization ICLR 2021 Empirical ri
pytorch-kaldi is a project for developing state-of-the-art DNN/RNN hybrid speech recognition systems. The DNN part is managed by pytorch, while feature extraction, label computation, and decoding are performed with the kaldi toolkit.
The PyTorch-Kaldi Speech Recognition Toolkit PyTorch-Kaldi is an open-source repository for developing state-of-the-art DNN/HMM speech recognition sys
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)
Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext
Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21)
Learning Structural Edits via Incremental Tree Transformations Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21) 1.
Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow.
Denoised-Smoothing-TF Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow. Denoised Smoothing is
CorNet Correlation Networks for Extreme Multi-label Text Classification
CorNet Correlation Networks for Extreme Multi-label Text Classification Prerequisites python==3.6.3 pytorch==1.2.0 torchgpipe==0.0.5 click==7.0 ruamel
Official Pytorch Implementation of: "ImageNet-21K Pretraining for the Masses"(2021) paper
ImageNet-21K Pretraining for the Masses Paper | Pretrained models Official PyTorch Implementation Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, Lihi Zelni
Grammar Induction using a Template Tree Approach
Gitta Gitta ("Grammar Induction using a Template Tree Approach") is a method for inducing context-free grammars. It performs particularly well on data
An easy-to-use high-performance asynchronous web framework.
An easy-to-use high-performance asynchronous web framework.
ELI5 is a Python package which helps to debug machine learning classifiers and explain their predictions
A library for debugging/inspecting machine learning classifiers and explaining their predictions
Algorithmic trading using machine learning.
Algorithmic Trading This machine learning algorithm was built using Python 3 and scikit-learn with a Decision Tree Classifier. The program gathers sto
《LightXML: Transformer with dynamic negative sampling for High-Performance Extreme Multi-label Text Classification》(AAAI 2021) GitHub:
LightXML: Transformer with dynamic negative sampling for High-Performance Extreme Multi-label Text Classification
Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021)
Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021, official Pytorch implementatio
Automated Machine Learning Pipeline with Feature Engineering and Hyper-Parameters Tuning
The mljar-supervised is an Automated Machine Learning Python package that works with tabular data. I
A scikit-learn based module for multi-label et. al. classification
scikit-multilearn scikit-multilearn is a Python module capable of performing multi-label learning tasks. It is built on-top of various scientific Pyth
Make tree planting a part of your daily workflow. 🌳
Continuous Reforestation Make tree planting a part of your daily workflow. 🌳 A GitHub Action for planting trees within your development workflow usin
DECAF: Deep Extreme Classification with Label Features
DECAF DECAF: Deep Extreme Classification with Label Features @InProceedings{Mittal21, author = "Mittal, A. and Dahiya, K. and Agrawal, S. and Sain
Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.
LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens
treeinterpreter - Interpreting scikit-learn's decision tree and random forest predictions.
TreeInterpreter Package for interpreting scikit-learn's decision tree and random forest predictions. Allows decomposing each prediction into bias and
A library for debugging/inspecting machine learning classifiers and explaining their predictions
ELI5 ELI5 is a Python package which helps to debug machine learning classifiers and explain their predictions. It provides support for the following m
A data-driven approach to quantify the value of classifiers in a machine learning ensemble.
Documentation | External Resources | Research Paper Shapley is a Python library for evaluating binary classifiers in a machine learning ensemble. The
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.
Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a
Little Ball of Fur - A graph sampling extension library for NetworKit and NetworkX (CIKM 2020)
Little Ball of Fur is a graph sampling extension library for Python. Please look at the Documentation, relevant Paper, Promo video and External Resour
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)
Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext
Highly interpretable classifiers for scikit learn, producing easily understood decision rules instead of black box models
Highly interpretable, sklearn-compatible classifier based on decision rules This is a scikit-learn compatible wrapper for the Bayesian Rule List class
A scikit-learn based module for multi-label et. al. classification
scikit-multilearn scikit-multilearn is a Python module capable of performing multi-label learning tasks. It is built on-top of various scientific Pyth
Object detection on multiple datasets with an automatically learned unified label space.
Simple multi-dataset detection An object detector trained on multiple large-scale datasets with a unified label space; Winning solution of E
Source code for Gramps Genealogical program
The Gramps Project ( https://gramps-project.org ) We strive to produce a genealogy program that is both intuitive for hobbyists and feature-complete f
Official implementation of the ICLR 2021 paper
You Only Need Adversarial Supervision for Semantic Image Synthesis Official PyTorch implementation of the ICLR 2021 paper "You Only Need Adversarial S
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.
Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a
A Static Analysis Tool for Detecting Security Vulnerabilities in Python Web Applications
This project is no longer maintained March 2020 Update: Please go see the amazing Pysa tutorial that should get you up to speed finding security vulne
Custom Python linting through AST expressions
bellybutton bellybutton is a customizable, easy-to-configure linting engine for Python. What is this good for? Tools like pylint and flake8 provide, o
Utilities for implementing a modified pre-order traversal tree in django.
django-mptt Utilities for implementing Modified Preorder Tree Traversal with your Django Models and working with trees of Model instances. Project hom
My 500 LED xmas tree
xmastree2020 This repository contains the code used for Matt's Christmas tree, as featured in "I wired my tree with 500 LED lights and calculated thei
A simple terminal Christmas tree made with Python
Python Christmas Tree A simple CLI Christmas tree made with Python Installation Just clone the repository and run $ python terminal_tree.py More opti
Official implementation of AAAI-21 paper "Label Confusion Learning to Enhance Text Classification Models"
Description: This is the official implementation of our AAAI-21 accepted paper Label Confusion Learning to Enhance Text Classification Models. The str
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.
Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)
Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext
Automates Machine Learning Pipeline with Feature Engineering and Hyper-Parameters Tuning :rocket:
MLJAR Automated Machine Learning Documentation: https://supervised.mljar.com/ Source Code: https://github.com/mljar/mljar-supervised Table of Contents
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)
Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext
Little Ball of Fur - A graph sampling extension library for NetworKit and NetworkX (CIKM 2020)
Little Ball of Fur is a graph sampling extension library for Python. Please look at the Documentation, relevant Paper, Promo video and External Resour
A data-driven approach to quantify the value of classifiers in a machine learning ensemble.
Documentation | External Resources | Research Paper Shapley is a Python library for evaluating binary classifiers in a machine learning ensemble. The
Minimal examples of data structures and algorithms in Python
Pythonic Data Structures and Algorithms Minimal and clean example implementations of data structures and algorithms in Python 3. Contributing Thanks f