2639 Repositories
Python meta-neural-network Libraries
Bundle Graph Convolutional Network
Bundle Graph Convolutional Network This is our Pytorch implementation for the paper: Jianxin Chang, Chen Gao, Xiangnan He, Depeng Jin and Yong Li. Bun
[ICDMW 2020] Code and dataset for "DGTN: Dual-channel Graph Transition Network for Session-based Recommendation"
DGTN: Dual-channel Graph Transition Network for Session-based Recommendation This repository contains PyTorch Implementation of ICDMW 2020 (NeuRec @ I
The source code for "Global Context Enhanced Graph Neural Network for Session-based Recommendation".
GCE-GNN Code This is the source code for SIGIR 2020 Paper: Global Context Enhanced Graph Neural Networks for Session-based Recommendation. Requirement
Handling Information Loss of Graph Neural Networks for Session-based Recommendation
LESSR A PyTorch implementation of LESSR (Lossless Edge-order preserving aggregation and Shortcut graph attention for Session-based Recommendation) fro
RetaGNN: Relational Temporal Attentive Graph Neural Networks for Holistic Sequential Recommendation
RetaGNN: Relational Temporal Attentive Graph Neural Networks for Holistic Sequential Recommendation Pytorch based implemention of Relational Temporal
Group-Buying Recommendation for Social E-Commerce
Group-Buying Recommendation for Social E-Commerce This is the official implementation of the paper Group-Buying Recommendation for Social E-Commerce (
Knowledge-aware Coupled Graph Neural Network for Social Recommendation
KCGN AAAI-2021 《Knowledge-aware Coupled Graph Neural Network for Social Recommendation》 Environments python 3.8 pytorch-1.6 DGL 0.5.3 (https://github.
Graph Neural Network based Social Recommendation Model. SIGIR2019.
Basic Information: This code is released for the papers: Le Wu, Peijie Sun, Yanjie Fu, Richang Hong, Xiting Wang and Meng Wang. A Neural Influence Dif
Global Context Enhanced Social Recommendation with Hierarchical Graph Neural Networks
SR-HGNN ICDM-2020 《Global Context Enhanced Social Recommendation with Hierarchical Graph Neural Networks》 Environments python 3.8 pytorch-1.6 DGL 0.5.
Detecting Beneficial Feature Interactions for Recommender Systems, AAAI 2021
Detecting Beneficial Feature Interactions for Recommender Systems (L0-SIGN) This is our implementation for the paper: Su, Y., Zhang, R., Erfani, S., &
An index of recommendation algorithms that are based on Graph Neural Networks.
An index of recommendation algorithms that are based on Graph Neural Networks.
[ICCV 2021] Focal Frequency Loss for Image Reconstruction and Synthesis
Focal Frequency Loss - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Focal Fre
[ICCV 2021] Learning A Single Network for Scale-Arbitrary Super-Resolution
ArbSR Pytorch implementation of "Learning A Single Network for Scale-Arbitrary Super-Resolution", ICCV 2021 [Project] [arXiv] Highlights A plug-in mod
CR-Fill: Generative Image Inpainting with Auxiliary Contextual Reconstruction. ICCV 2021
crfill Usage | Web App | | Paper | Supplementary Material | More results | code for paper ``CR-Fill: Generative Image Inpainting with Auxiliary Contex
Officially unofficial re-implementation of paper: Paint Transformer: Feed Forward Neural Painting with Stroke Prediction, ICCV 2021.
Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Official Paddle Implementation] [Huggingface Gradio Demo] [Unofficial
Fast Style Transfer in TensorFlow
Fast Style Transfer in TensorFlow Add styles from famous paintings to any photo in a fraction of a second! You can even style videos! It takes 100ms o
This tool analyzes the json files generated by stream-lnd-htlcs to find hidden channel demand.
analyze_lnd_htlc Introduction Rebalancing channels is an important part of running a Lightning Network node. While it would be great if all channels c
The official repository for our paper "The Neural Data Router: Adaptive Control Flow in Transformers Improves Systematic Generalization".
Codebase for learning control flow in transformers The official repository for our paper "The Neural Data Router: Adaptive Control Flow in Transformer
Acoustic mosquito detection code with Bayesian Neural Networks
HumBugDB Acoustic mosquito detection with Bayesian Neural Networks. Extract audio or features from our large-scale dataset on Zenodo. This repository
Source code for GNN-LSPE (Graph Neural Networks with Learnable Structural and Positional Representations)
Graph Neural Networks with Learnable Structural and Positional Representations Source code for the paper "Graph Neural Networks with Learnable Structu
Code for “ACE-HGNN: Adaptive Curvature ExplorationHyperbolic Graph Neural Network”
ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network This repository is the implementation of ACE-HGNN in PyTorch. Environment pyt
SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images.
SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images (IEEE GRSL 2021) Code (based on mmdetection) for SSPNet: Scale Selec
Light-SERNet: A lightweight fully convolutional neural network for speech emotion recognition
Light-SERNet This is the Tensorflow 2.x implementation of our paper "Light-SERNet: A lightweight fully convolutional neural network for speech emotion
State of the Art Neural Networks for Generative Deep Learning
pyradox-generative State of the Art Neural Networks for Generative Deep Learning Table of Contents pyradox-generative Table of Contents Installation U
Python code to generate art with Generative Adversarial Network
GAN_Canvas_Maker Generating Art using Generative Adversarial Network (GAN) Python code to generate art with Generative Adversarial Network: https://to
Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation
Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision Training Efficiency We show the training efficiency of our DSLP model b
A curated list of awesome resources combining Transformers with Neural Architecture Search
A curated list of awesome resources combining Transformers with Neural Architecture Search
A public API written in Python using the Flask web framework to determine the direction of a road sign using AI
python-public-API This repository is a public API for solving the problem of the final of the AIIJC competition. The task is to create an AI for the c
Source Code for our paper: Understand me, if you refer to Aspect Knowledge: Knowledge-aware Gated Recurrent Memory Network
KaGRMN-DSG_ABSA This repository contains the PyTorch source Code for our paper: Understand me, if you refer to Aspect Knowledge: Knowledge-aware Gated
Code to reproduce the experiments from our NeurIPS 2021 paper " The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective"
Code To run: python runner.py new --save SAVE_NAME --data PATH_TO_DATA_DIR --dataset DATASET --model model_name [options] --n 1000 - train - t
ProMP: Proximal Meta-Policy Search
ProMP: Proximal Meta-Policy Search Implementations corresponding to ProMP (Rothfuss et al., 2018). Overall this repository consists of two branches: m
Hypernets: A General Automated Machine Learning framework to simplify the development of End-to-end AutoML toolkits in specific domains.
A General Automated Machine Learning framework to simplify the development of End-to-end AutoML toolkits in specific domains.
Medical image analysis framework merging ANTsPy and deep learning
ANTsPyNet A collection of deep learning architectures and applications ported to the python language and tools for basic medical image processing. Bas
pulse2percept: A Python-based simulation framework for bionic vision
pulse2percept: A Python-based simulation framework for bionic vision Retinal degenerative diseases such as retinitis pigmentosa and macular degenerati
boofuzz: Network Protocol Fuzzing for Humans
boofuzz: Network Protocol Fuzzing for Humans Boofuzz is a fork of and the successor to the venerable Sulley fuzzing framework. Besides numerous bug fi
PN-Net a neural field-based framework for depth estimation from single-view RGB images.
PN-Net We present a neural field-based framework for depth estimation from single-view RGB images. Rather than representing a 2D depth map as a single
Composing methods for ML training efficiency
MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training.
GUI for a Vocal Remover that uses Deep Neural Networks.
GUI for a Vocal Remover that uses Deep Neural Networks.
A style-based Quantum Generative Adversarial Network
Style-qGAN A style based Quantum Generative Adversarial Network (style-qGAN) model for Monte Carlo event generation. Tutorial We have prepared a noteb
The official PyTorch implementation for the paper "sMGC: A Complex-Valued Graph Convolutional Network via Magnetic Laplacian for Directed Graphs".
Magnetic Graph Convolutional Networks About The official PyTorch implementation for the paper sMGC: A Complex-Valued Graph Convolutional Network via M
Analysis of rationale selection in neural rationale models
Neural Rationale Interpretability Analysis We analyze the neural rationale models proposed by Lei et al. (2016) and Bastings et al. (2019), as impleme
Implementation of paper "Graph Condensation for Graph Neural Networks"
GCond A PyTorch implementation of paper "Graph Condensation for Graph Neural Networks" Code will be released soon. Stay tuned :) Abstract We propose a
Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation
Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision Training Efficiency We show the training efficiency of our DSLP model b
Pytorch code for our paper "Feedback Network for Image Super-Resolution" (CVPR2019)
Feedback Network for Image Super-Resolution [arXiv] [CVF] [Poster] Update: Our proposed Gated Multiple Feedback Network (GMFN) will appear in BMVC2019
Image Super-Resolution by Neural Texture Transfer
SRNTT: Image Super-Resolution by Neural Texture Transfer Tensorflow implementation of the paper Image Super-Resolution by Neural Texture Transfer acce
PyTorch code for our paper "Gated Multiple Feedback Network for Image Super-Resolution" (BMVC2019)
Gated Multiple Feedback Network for Image Super-Resolution This repository contains the PyTorch implementation for the proposed GMFN [arXiv]. The fram
Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" (NeurIPS'20)
IGNN Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" [paper] [supp] Prepare datasets 1 Download training dataset
Density-aware Single Image De-raining using a Multi-stream Dense Network (CVPR 2018)
DID-MDN Density-aware Single Image De-raining using a Multi-stream Dense Network He Zhang, Vishal M. Patel [Paper Link] (CVPR'18) We present a novel d
Second-order Attention Network for Single Image Super-resolution (CVPR-2019)
Second-order Attention Network for Single Image Super-resolution (CVPR-2019) "Second-order Attention Network for Single Image Super-resolution" is pub
Torch code for our CVPR 2018 paper "Residual Dense Network for Image Super-Resolution" (Spotlight)
Residual Dense Network for Image Super-Resolution This repository is for RDN introduced in the following paper Yulun Zhang, Yapeng Tian, Yu Kong, Bine
Multi-Scale Progressive Fusion Network for Single Image Deraining
Multi-Scale Progressive Fusion Network for Single Image Deraining (MSPFN) This is an implementation of the MSPFN model proposed in the paper (Multi-Sc
Single Image Deraining Using Bilateral Recurrent Network (TIP 2020)
Single Image Deraining Using Bilateral Recurrent Network Introduction Single image deraining has received considerable progress based on deep convolut
Pytorch implementation for DFN: Distributed Feedback Network for Single-Image Deraining.
DFN:Distributed Feedback Network for Single-Image Deraining Abstract Recently, deep convolutional neural networks have achieved great success for sing
Benchmark datasets, data loaders, and evaluators for graph machine learning
Overview The Open Graph Benchmark (OGB) is a collection of benchmark datasets, data loaders, and evaluators for graph machine learning. Datasets cover
PyTorch Implement for Path Attention Graph Network
SPAGAN in PyTorch This is a PyTorch implementation of the paper "SPAGAN: Shortest Path Graph Attention Network" Prerequisites We prefer to create a ne
Attention over nodes in Graph Neural Networks using PyTorch (NeurIPS 2019)
Intro This repository contains code to generate data and reproduce experiments from our NeurIPS 2019 paper: Boris Knyazev, Graham W. Taylor, Mohamed R
IsoGCN code for ICLR2021
IsoGCN The official implementation of IsoGCN, presented in the ICLR2021 paper Isometric Transformation Invariant and Equivariant Graph Convolutional N
[ICML 2020] "When Does Self-Supervision Help Graph Convolutional Networks?" by Yuning You, Tianlong Chen, Zhangyang Wang, Yang Shen
When Does Self-Supervision Help Graph Convolutional Networks? PyTorch implementation for When Does Self-Supervision Help Graph Convolutional Networks?
Repository for benchmarking graph neural networks
Benchmarking Graph Neural Networks Updates Nov 2, 2020 Project based on DGL 0.4.2. See the relevant dependencies defined in the environment yml files
Graph Attention Networks
GAT Graph Attention Networks (Veličković et al., ICLR 2018): https://arxiv.org/abs/1710.10903 GAT layer t-SNE + Attention coefficients on Cora Overvie
Tensorflow Repo for "DeepGCNs: Can GCNs Go as Deep as CNNs?"
DeepGCNs: Can GCNs Go as Deep as CNNs? In this work, we present new ways to successfully train very deep GCNs. We borrow concepts from CNNs, mainly re
The code is an implementation of Feedback Convolutional Neural Network for Visual Localization and Segmentation.
Feedback Convolutional Neural Network for Visual Localization and Segmentation The code is an implementation of Feedback Convolutional Neural Network
Unet network with mean teacher for altrasound image segmentation
Unet network with mean teacher for altrasound image segmentation
Bittensor - an open, decentralized, peer-to-peer network that functions as a market system for the development of artificial intelligence
At Bittensor, we are creating an open, decentralized, peer-to-peer network that functions as a market system for the development of artificial intelligence.
Passhunt is a simple tool for searching of default credentials for network devices, web applications and more. Search through 523 vendors and their 2084 default passwords.
Passhunt is a simple tool for searching of default credentials for network devices, web applications and more. Search through 523 vendors and their 2084 default passwords.
SynNet - synthetic tree generation using neural networks
SynNet This repo contains the code and analysis scripts for our amortized approach to synthetic tree generation using neural networks. Our model can s
Code for the preprint "Well-classified Examples are Underestimated in Classification with Deep Neural Networks"
This is a repository for the paper of "Well-classified Examples are Underestimated in Classification with Deep Neural Networks" The implementation and
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"
DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit
Quantum-enhanced transformer neural network
Example of a Quantum-enhanced transformer neural network Get the code: git clone https://github.com/rdisipio/qtransformer.git cd qtransformer Create
Semi-Supervised Signed Clustering Graph Neural Network (and Implementation of Some Spectral Methods)
SSSNET SSSNET: Semi-Supervised Signed Network Clustering For details, please read our paper. Environment Setup Overview The project has been tested on
This is an official pytorch implementation of Fast Fourier Convolution.
Fast Fourier Convolution (FFC) for Image Classification This is the official code of Fast Fourier Convolution for image classification on ImageNet. Ma
PyTorch implementation of PP-LCNet: A Lightweight CPU Convolutional Neural Network
PyTorch implementation of PP-LCNet Reproduction of PP-LCNet architecture as described in PP-LCNet: A Lightweight CPU Convolutional Neural Network by C
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"
DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit
this is demo of tool dosploit for test and dos in network with python
this tool for dos and pentest vul SKILLS: syn flood udp flood $ git clone https://github.com/amicheh/demo_dosploit/ $ cd demo_dosploit $ python3 -m pi
A social networking service scraper in Python
snscrape snscrape is a scraper for social networking services (SNS). It scrapes things like user profiles, hashtags, or searches and returns the disco
Neural text generators like the GPT models promise a general-purpose means of manipulating texts.
Boolean Prompting for Neural Text Generators Neural text generators like the GPT models promise a general-purpose means of manipulating texts. These m
a micro OCR network with 0.07mb params.
MicroOCR a micro OCR network with 0.07mb params. Layer (type) Output Shape Param # Conv2d-1 [-1, 64, 8,
MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training
MosaicML Composer MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training. We aim to ease th
Neural Motion Learner With Python
Neural Motion Learner Introduction This work is to extract skeletal structure from volumetric observations and to learn motion dynamics from the detec
A simple software which can use to make a server in local network
home-nas it is simple software which can use to make a server in local network, it has a web site on it which can use by multipale system, i use nginx
Network Dynaimcs Simulation
A Final Year Project in CUHK, Autumn 2021 Network Dynaimcs Simulation Files param.h edit all the variables & settings here simulate.c the main program
Disease Informed Neural Networks (DINNs) — neural networks capable of learning how diseases spread, forecasting their progression, and finding their unique parameters (e.g. death rate).
DINN We introduce Disease Informed Neural Networks (DINNs) — neural networks capable of learning how diseases spread, forecasting their progression, a
Code for "Understanding Pooling in Graph Neural Networks"
Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install
Instance-based label smoothing for improving deep neural networks generalization and calibration
Instance-based Label Smoothing for Neural Networks Pytorch Implementation of the algorithm. This repository includes a new proposed method for instanc
Simple (but Strong) Baselines for POMDPs
Recurrent Model-Free RL is a Strong Baseline for Many POMDPs Welcome to the POMDP world! This repo provides some simple baselines for POMDPs, specific
Disturbing Target Values for Neural Network regularization: attacking the loss layer to prevent overfitting
Disturbing Target Values for Neural Network regularization: attacking the loss layer to prevent overfitting 1. Classification Task PyTorch implementat
Code repository for the paper "Doubly-Trained Adversarial Data Augmentation for Neural Machine Translation" with instructions to reproduce the results.
Doubly Trained Neural Machine Translation System for Adversarial Attack and Data Augmentation Languages Experimented: Data Overview: Source Target Tra
Official implementation for Multi-Modal Interaction Graph Convolutional Network for Temporal Language Localization in Videos
Multi-modal Interaction Graph Convolutioal Network for Temporal Language Localization in Videos Official implementation for Multi-Modal Interaction Gr
Making self-supervised learning work on molecules by using their 3D geometry to pre-train GNNs. Implemented in DGL and Pytorch Geometric.
3D Infomax improves GNNs for Molecular Property Prediction Video | Paper We pre-train GNNs to understand the geometry of molecules given only their 2D
Style-based Neural Drum Synthesis with GAN inversion
Style-based Drum Synthesis with GAN Inversion Demo TensorFlow implementation of a style-based version of the adversarial drum synth (ADS) from the pap
Code for Understanding Pooling in Graph Neural Networks
Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install
[ICCV'21] UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction
UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction Project Page | Paper | Supplementary | Video This reposit
FAST-RIR: FAST NEURAL DIFFUSE ROOM IMPULSE RESPONSE GENERATOR
This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.
[ICCV21] Code for RetrievalFuse: Neural 3D Scene Reconstruction with a Database
RetrievalFuse Paper | Project Page | Video RetrievalFuse: Neural 3D Scene Reconstruction with a Database Yawar Siddiqui, Justus Thies, Fangchang Ma, Q
Pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering".
TRAnsformer Routing Networks (TRAR) This is an official implementation for ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visu
A PyTorch implementation of "From Two to One: A New Scene Text Recognizer with Visual Language Modeling Network" (ICCV2021)
From Two to One: A New Scene Text Recognizer with Visual Language Modeling Network The official code of VisionLAN (ICCV2021). VisionLAN successfully a
Azure Neural Speech Service TTS
Written in Python using the Azure Speech SDK. App.py provides an easy way to create an Text-To-Speech request to Azure Speech and download the wav file.
Permute Me Softly: Learning Soft Permutations for Graph Representations
Permute Me Softly: Learning Soft Permutations for Graph Representations
Hypercomplex Neural Networks with PyTorch
HyperNets Hypercomplex Neural Networks with PyTorch: this repository would be a container for hypercomplex neural network modules to facilitate resear
This project is used for the paper Differentiable Programming of Isometric Tensor Network
This project is used for the paper "Differentiable Programming of Isometric Tensor Network". (arXiv:2110.03898)