143 Repositories
Python parameter-discovery Libraries
Official implementation of "A Unified Objective for Novel Class Discovery", ICCV2021 (Oral)
A Unified Objective for Novel Class Discovery This is the official repository for the paper: A Unified Objective for Novel Class Discovery Enrico Fini
Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+
Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+
TorchDrug is a PyTorch-based machine learning toolbox designed for drug discovery
A powerful and flexible machine learning platform for drug discovery
A central task in drug discovery is searching, screening, and organizing large chemical databases
A central task in drug discovery is searching, screening, and organizing large chemical databases. Here, we implement clustering on molecular similarity. We support multiple methods to provide a interactive exploration of chemical space.
Fast and scalable uncertainty quantification for neural molecular property prediction, accelerated optimization, and guided virtual screening.
Evidential Deep Learning for Guided Molecular Property Prediction and Discovery Ava Soleimany*, Alexander Amini*, Samuel Goldman*, Daniela Rus, Sangee
π Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.βββ
π Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.βββ
The tool helps to find hidden parameters that can be vulnerable or can reveal interesting functionality that other hunters miss.
The tool helps to find hidden parameters that can be vulnerable or can reveal interesting functionality that other hunters miss. Greater accuracy is achieved thanks to the line-by-line comparison of pages, comparison of response code and reflections.
Unsupervised Discovery of Object Radiance Fields
Unsupervised Discovery of Object Radiance Fields by Hong-Xing Yu, Leonidas J. Guibas and Jiajun Wu from Stanford University. arXiv link: https://arxiv
The Power of Scale for Parameter-Efficient Prompt Tuning
The Power of Scale for Parameter-Efficient Prompt Tuning Implementation of soft embeddings from https://arxiv.org/abs/2104.08691v1 using Pytorch and H
source code for https://arxiv.org/abs/2005.11248 "Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics"
Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics This work will be published in Nature Biomedical
Tool for ROS 2 IP Discovery + System Monitoring
Monitor the status of computers on a network using the DDS function of ROS2.
Automated modeling and machine learning framework FEDOT
This repository contains FEDOT - an open-source framework for automated modeling and machine learning (AutoML). It can build custom modeling pipelines for different real-world processes in an automated way using an evolutionary approach. FEDOT supports classification (binary and multiclass), regression, clustering, and time series prediction tasks.
Compositional and Parameter-Efficient Representations for Large Knowledge Graphs
NodePiece - Compositional and Parameter-Efficient Representations for Large Knowledge Graphs NodePiece is a "tokenizer" for reducing entity vocabulary
Neighborhood Contrastive Learning for Novel Class Discovery
Neighborhood Contrastive Learning for Novel Class Discovery This repository contains the official implementation of our paper: Neighborhood Contrastiv
Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space
extrinsic2pyramid Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space Intro A very simple and straightforward modu
KeypointDeformer: Unsupervised 3D Keypoint Discovery for Shape Control
KeypointDeformer: Unsupervised 3D Keypoint Discovery for Shape Control Tomas Jakab, Richard Tucker, Ameesh Makadia, Jiajun Wu, Noah Snavely, Angjoo Ka
An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise Weight Sharing) by Sensetime Research.
An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise Weight Sharing) by Sensetime Research.
MBTR is a python package for multivariate boosted tree regressors trained in parameter space.
MBTR is a python package for multivariate boosted tree regressors trained in parameter space.
This is the repo for the paper `SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization'. (published in Bioinformatics'21)
SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization This is the code for our paper ``SumGNN: Multi-typed Drug
TraND: Transferable Neighborhood Discovery for Unsupervised Cross-domain Gait Recognition.
TraND This is the code for the paper "Jinkai Zheng, Xinchen Liu, Chenggang Yan, Jiyong Zhang, Wu Liu, Xiaoping Zhang and Tao Mei: TraND: Transferable
Amundsen is a metadata driven application for improving the productivity of data analysts, data scientists and engineers when interacting with data.
Amundsen is a metadata driven application for improving the productivity of data analysts, data scientists and engineers when interacting with data.
Unsupervised Language Modeling at scale for robust sentiment classification
** DEPRECATED ** This repo has been deprecated. Please visit Megatron-LM for our up to date Large-scale unsupervised pretraining and finetuning code.
Datamol is a python library to work with molecules
Datamol is a python library to work with molecules. It's a layer built on top of RDKit and aims to be as light as possible.
Structural basis for solubility in protein expression systems
Structural basis for solubility in protein expression systems Large-scale protein production for biotechnology and biopharmaceutical applications rely
Datamol is a python library to work with molecules.
Datamol is a python library to work with molecules. It's a layer built on top of RDKit and aims to be as light as possible.
Privacy enhanced BitTorrent client with P2P content discovery
Tribler Towards making Bittorrent anonymous and impossible to shut down. We use our own dedicated Tor-like network for anonymous torrent downloading.
Python Library for learning (Structure and Parameter) and inference (Statistical and Causal) in Bayesian Networks.
pgmpy pgmpy is a python library for working with Probabilistic Graphical Models. Documentation and list of algorithms supported is at our official sit
A Python library for detecting patterns and anomalies in massive datasets using the Matrix Profile
matrixprofile-ts matrixprofile-ts is a Python 2 and 3 library for evaluating time series data using the Matrix Profile algorithms developed by the Keo
STUMPY is a powerful and scalable Python library for computing a Matrix Profile, which can be used for a variety of time series data mining tasks
STUMPY STUMPY is a powerful and scalable library that efficiently computes something called the matrix profile, which can be used for a variety of tim
Optimising chemical reactions using machine learning
Summit Summit is a set of tools for optimising chemical processes. Weβve started by targeting reactions. What is Summit? Currently, reaction optimisat
Implementation of the π Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones
HaloNet - Pytorch Implementation of the Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones. This re
A mini library for Policy Gradients with Parameter-based Exploration, with reference implementation of the ClipUp optimizer from NNAISENSE.
PGPElib A mini library for Policy Gradients with Parameter-based Exploration [1] and friends. This library serves as a clean re-implementation of the
Hyper-parameter optimization for sklearn
hyperopt-sklearn Hyperopt-sklearn is Hyperopt-based model selection among machine learning algorithms in scikit-learn. See how to use hyperopt-sklearn
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.
Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista
Probabilistic programming framework that facilitates objective model selection for time-varying parameter models.
Time series analysis today is an important cornerstone of quantitative science in many disciplines, including natural and life sciences as well as eco
A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing"
A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing" (WebConf 2021). Abstract In this work we propose Pathfind
Seach Losses of our paper 'Loss Function Discovery for Object Detection via Convergence-Simulation Driven Search', accepted by ICLR 2021.
CSE-Autoloss Designing proper loss functions for vision tasks has been a long-standing research direction to advance the capability of existing models
Web scraping library and command-line tool for text discovery and extraction (main content, metadata, comments)
trafilatura: Web scraping tool for text discovery and retrieval Description Trafilatura is a Python package and command-line tool which seamlessly dow
π The official Python client library for Google's discovery based APIs.
Google API Client This is the Python client library for Google's discovery based APIs. To get started, please see the docs folder. These client librar
π The official Python client library for Google's discovery based APIs.
Google API Client This is the Python client library for Google's discovery based APIs. To get started, please see the docs folder. These client librar
Python Library for learning (Structure and Parameter) and inference (Statistical and Causal) in Bayesian Networks.
pgmpy pgmpy is a python library for working with Probabilistic Graphical Models. Documentation and list of algorithms supported is at our official sit
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.
Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista
Scapy: the Python-based interactive packet manipulation program & library. Supports Python 2 & Python 3.
Scapy Scapy is a powerful Python-based interactive packet manipulation program and library. It is able to forge or decode packets of a wide number of