1974 Repositories
Python resilient-swarm-communications-with-meta-graph-convolutional-networks Libraries
PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos
PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos. By adopting a unified pipeline-based API design, PyKale enforces standardization and minimalism, via reusing existing resources, reducing repetitions and redundancy, and recycling learning models across areas.
A Practical Debugging Tool for Training Deep Neural Networks
Cockpit is a visual and statistical debugger specifically designed for deep learning!
Reimplementation of the paper `Human Attention Maps for Text Classification: Do Humans and Neural Networks Focus on the Same Words? (ACL2020)`
Human Attention for Text Classification Re-implementation of the paper Human Attention Maps for Text Classification: Do Humans and Neural Networks Foc
The official PyTorch implementation of the paper: *Xili Dai, Xiaojun Yuan, Haigang Gong, Yi Ma. "Fully Convolutional Line Parsing." *.
F-Clip — Fully Convolutional Line Parsing This repository contains the official PyTorch implementation of the paper: *Xili Dai, Xiaojun Yuan, Haigang
Graph Neural Networks for Recommender Systems
This repository contains code to train and test GNN models for recommendation, mainly using the Deep Graph Library (DGL).
SpikeX - SpaCy Pipes for Knowledge Extraction
SpikeX is a collection of pipes ready to be plugged in a spaCy pipeline. It aims to help in building knowledge extraction tools with almost-zero effort.
Y. Zhang, Q. Yao, W. Dai, L. Chen. AutoSF: Searching Scoring Functions for Knowledge Graph Embedding. IEEE International Conference on Data Engineering (ICDE). 2020
AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:
TalkNet 2: Non-Autoregressive Depth-Wise Separable Convolutional Model for Speech Synthesis with Explicit Pitch and Duration Prediction.
TalkNet 2 [WIP] TalkNet 2: Non-Autoregressive Depth-Wise Separable Convolutional Model for Speech Synthesis with Explicit Pitch and Duration Predictio
Few-Shot Graph Learning for Molecular Property Prediction
Few-shot Graph Learning for Molecular Property Prediction Introduction This is the source code and dataset for the following paper: Few-shot Graph Lea
Knowledge Graph,Question Answering System,基于知识图谱和向量检索的医疗诊断问答系统
Knowledge Graph,Question Answering System,基于知识图谱和向量检索的医疗诊断问答系统
Official implementation of GraphMask as presented in our paper Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking.
GraphMask This repository contains an implementation of GraphMask, the interpretability technique for graph neural networks presented in our ICLR 2021
Profil3r is an OSINT tool that allows you to find potential profiles of a person on social networks, as well as their email addresses 🕵️
Profil3r is an OSINT tool that allows you to find potential profiles of a person on social networks, as well as their email addresses. This program also alerts you to the presence of a data leak for the found emails.
A Python library created to assist programmers with complex mathematical functions
libmaths libmaths was created not only as a learning experience for me, but as a way to make mathematical models in seconds for Python users using mat
A complete guide to start and improve in machine learning (ML)
A complete guide to start and improve in machine learning (ML), artificial intelligence (AI) in 2021 without ANY background in the field and stay up-to-date with the latest news and state-of-the-art techniques!
Sequence-to-sequence framework with a focus on Neural Machine Translation based on Apache MXNet
Sequence-to-sequence framework with a focus on Neural Machine Translation based on Apache MXNet
Scalable Graph Neural Networks for Heterogeneous Graphs
Neighbor Averaging over Relation Subgraphs (NARS) NARS is an algorithm for node classification on heterogeneous graphs, based on scalable neighbor ave
[CVPRW 21] "BNN - BN = ? Training Binary Neural Networks without Batch Normalization", Tianlong Chen, Zhenyu Zhang, Xu Ouyang, Zechun Liu, Zhiqiang Shen, Zhangyang Wang
BNN - BN = ? Training Binary Neural Networks without Batch Normalization Codes for this paper BNN - BN = ? Training Binary Neural Networks without Bat
Implementation of Convolutional enhanced image Transformer
CeiT : Convolutional enhanced image Transformer This is an unofficial PyTorch implementation of Incorporating Convolution Designs into Visual Transfor
Vector Neurons: A General Framework for SO(3)-Equivariant Networks
Vector Neurons: A General Framework for SO(3)-Equivariant Networks Created by Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacc
Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks
Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks. Bayesian-Torch is designed to be flexible and seamless in extending a deterministic deep neural network architecture to corresponding Bayesian form by simply replacing the deterministic layers with Bayesian layers.
Visualization Toolbox for Long Short Term Memory networks (LSTMs)
Visualization Toolbox for Long Short Term Memory networks (LSTMs)
Exact Pareto Optimal solutions for preference based Multi-Objective Optimization
Exact Pareto Optimal solutions for preference based Multi-Objective Optimization
Visualization toolkit for neural networks in PyTorch! Demo --
FlashTorch A Python visualization toolkit, built with PyTorch, for neural networks in PyTorch. Neural networks are often described as "black box". The
Sandbox for training deep learning networks
Deep learning networks This repo is used to research convolutional networks primarily for computer vision tasks. For this purpose, the repo contains (
Image augmentation library in Python for machine learning.
Augmentor is an image augmentation library in Python for machine learning. It aims to be a standalone library that is platform and framework independe
Fine-tune pretrained Convolutional Neural Networks with PyTorch
Fine-tune pretrained Convolutional Neural Networks with PyTorch. Features Gives access to the most popular CNN architectures pretrained on ImageNet. A
PyTorch for Semantic Segmentation
PyTorch for Semantic Segmentation This repository contains some models for semantic segmentation and the pipeline of training and testing models, impl
Multi-layer convolutional LSTM with Pytorch
Convolution_LSTM_pytorch Thanks for your attention. I haven't got time to maintain this repo for a long time. I recommend this repo which provides an
Submanifold sparse convolutional networks
Submanifold Sparse Convolutional Networks This is the PyTorch library for training Submanifold Sparse Convolutional Networks. Spatial sparsity This li
My Body is a Cage: the Role of Morphology in Graph-Based Incompatible Control
My Body is a Cage: the Role of Morphology in Graph-Based Incompatible Control
This project is a loose implementation of paper "Algorithmic Financial Trading with Deep Convolutional Neural Networks: Time Series to Image Conversion Approach"
Stock Market Buy/Sell/Hold prediction Using convolutional Neural Network This repo is an attempt to implement the research paper titled "Algorithmic F
QA-GNN: Question Answering using Language Models and Knowledge Graphs
QA-GNN: Question Answering using Language Models and Knowledge Graphs This repo provides the source code & data of our paper: QA-GNN: Reasoning with L
Try out deep learning models online on Google Colab
Try out deep learning models online on Google Colab
I-BERT: Integer-only BERT Quantization
I-BERT: Integer-only BERT Quantization HuggingFace Implementation I-BERT is also available in the master branch of HuggingFace! Visit the following li
CondenseNet V2: Sparse Feature Reactivation for Deep Networks
CondenseNetV2 This repository is the official Pytorch implementation for "CondenseNet V2: Sparse Feature Reactivation for Deep Networks" paper by Le Y
Domain Connectivity Analysis Tools to analyze aggregate connectivity patterns across a set of domains during security investigations
DomainCAT (Domain Connectivity Analysis Tool) Domain Connectivity Analysis Tool is used to analyze aggregate connectivity patterns across a set of dom
Elliot is a comprehensive recommendation framework that analyzes the recommendation problem from the researcher's perspective.
Comprehensive and Rigorous Framework for Reproducible Recommender Systems Evaluation
Deep Reinforcement Learning based Trading Agent for Bitcoin
Deep Trading Agent Deep Reinforcement Learning based Trading Agent for Bitcoin using DeepSense Network for Q function approximation. For complete deta
Using multidimensional LSTM neural networks to create a forecast for Bitcoin price
Multidimensional LSTM BitCoin Time Series Using multidimensional LSTM neural networks to create a forecast for Bitcoin price. For notes around this co
Predict stock movement with Machine Learning and Deep Learning algorithms
Project Overview Stock market movement prediction using LSTM Deep Neural Networks and machine learning algorithms Software and Library Requirements Th
Reinforcement Learning for Portfolio Management
qtrader Reinforcement Learning for Portfolio Management Why Reinforcement Learning? Learns the optimal action, rather than models the market. Adaptive
OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network
Stock Price Prediction of Apple Inc. Using Recurrent Neural Network OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network Dataset:
Introducing neural networks to predict stock prices
IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o
Use unsupervised and supervised learning to predict stocks
AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n
peartree: A library for converting transit data into a directed graph for sketch network analysis.
peartree 🍐 🌳 peartree is a library for converting GTFS feed schedules into a representative directed network graph. The tool uses Partridge to conve
Tools for the extraction of OpenStreetMap street network data
OSMnet Tools for the extraction of OpenStreetMap (OSM) street network data. Intended to be used in tandem with Pandana and UrbanAccess libraries to ex
OSMnx: Python for street networks. Retrieve, model, analyze, and visualize street networks and other spatial data from OpenStreetMap.
OSMnx OSMnx is a Python package that lets you download geospatial data from OpenStreetMap and model, project, visualize, and analyze real-world street
Net2Vis automatically generates abstract visualizations for convolutional neural networks from Keras code.
Automatic neural network visualizations generated in your browser!
PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021)
PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021) This repo presents PyTorch implementation of M
The implementation of the CVPR2021 paper "Structure-Aware Face Clustering on a Large-Scale Graph with 10^7 Nodes"
STAR-FC This code is the implementation for the CVPR 2021 paper "Structure-Aware Face Clustering on a Large-Scale Graph with 10^7 Nodes" 🌟 🌟 . 🎓 Re
Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution
FAU Implementation of the paper: Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution. Yingruo
Official Implementation for "ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement" https://arxiv.org/abs/2104.02699
ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement Recently, the power of unconditional image synthesis has significantly advanced th
Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GanFormer and TransGan paper
TransGanFormer (wip) Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GansFormer and TransGan paper. I
Dynamic Slimmable Network (CVPR 2021, Oral)
Dynamic Slimmable Network (DS-Net) This repository contains PyTorch code of our paper: Dynamic Slimmable Network (CVPR 2021 Oral). Architecture of DS-
Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks
Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks Abstract Facial expression recognition in video
Code for the Convolutional Vision Transformer (ConViT)
ConViT : Vision Transformers with Convolutional Inductive Biases This repository contains PyTorch code for ConViT. It builds on code from the Data-Eff
Official implementation for NIPS'17 paper: PredRNN: Recurrent Neural Networks for Predictive Learning Using Spatiotemporal LSTMs.
PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive Learning The predictive learning of spatiotemporal sequences aims to generate future
NetworkX is a Python package for the creation, manipulation, and study of the structure, dynamics, and functions of complex networks.
NetworkX is a Python package for the creation, manipulation, and study of the structure, dynamics, and functions of complex networks.
《A-CNN: Annularly Convolutional Neural Networks on Point Clouds》(2019)
A-CNN: Annularly Convolutional Neural Networks on Point Clouds Created by Artem Komarichev, Zichun Zhong, Jing Hua from Department of Computer Science
Regularizing Generative Adversarial Networks under Limited Data (CVPR 2021)
Regularizing Generative Adversarial Networks under Limited Data [Project Page][Paper] Implementation for our GAN regularization method. The proposed r
Personalized Federated Learning using Pytorch (pFedMe)
Personalized Federated Learning with Moreau Envelopes (NeurIPS 2020) This repository implements all experiments in the paper Personalized Federated Le
Official implementation of Rethinking Graph Neural Architecture Search from Message-passing (CVPR2021)
Rethinking Graph Neural Architecture Search from Message-passing Intro The GNAS can automatically learn better architecture with the optimal depth of
《Truly shift-invariant convolutional neural networks》(2021)
Truly shift-invariant convolutional neural networks [Paper] Authors: Anadi Chaman and Ivan Dokmanić Convolutional neural networks were always assumed
Code for the paper "Graph Attention Tracking". (CVPR2021)
SiamGAT 1. Environment setup This code has been tested on Ubuntu 16.04, Python 3.5, Pytorch 1.2.0, CUDA 9.0. Please install related libraries before r
Code for paper "A Critical Assessment of State-of-the-Art in Entity Alignment" (https://arxiv.org/abs/2010.16314)
A Critical Assessment of State-of-the-Art in Entity Alignment This repository contains the source code for the paper A Critical Assessment of State-of
git《Joint Entity and Relation Extraction with Set Prediction Networks》(2020) GitHub:
Joint Entity and Relation Extraction with Set Prediction Networks Source code for Joint Entity and Relation Extraction with Set Prediction Networks. W
Spectral Temporal Graph Neural Network (StemGNN in short) for Multivariate Time-series Forecasting
Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting This repository is the official implementation of Spectral Temporal Gr
An attempt at the implementation of GLOM, Geoffrey Hinton's paper for emergent part-whole hierarchies from data
GLOM TensorFlow This Python package attempts to implement GLOM in TensorFlow, which allows advances made by several different groups transformers, neu
Enabling easy statistical significance testing for deep neural networks.
deep-significance: Easy and Better Significance Testing for Deep Neural Networks Contents ⁉️ Why 📥 Installation 🔖 Examples Intermezzo: Almost Stocha
A probabilistic programming language in TensorFlow. Deep generative models, variational inference.
Edward is a Python library for probabilistic modeling, inference, and criticism. It is a testbed for fast experimentation and research with probabilis
Python Library for learning (Structure and Parameter) and inference (Statistical and Causal) in Bayesian Networks.
pgmpy pgmpy is a python library for working with Probabilistic Graphical Models. Documentation and list of algorithms supported is at our official sit
Probabilistic reasoning and statistical analysis in TensorFlow
TensorFlow Probability TensorFlow Probability is a library for probabilistic reasoning and statistical analysis in TensorFlow. As part of the TensorFl
Scikit-learn compatible estimation of general graphical models
skggm : Gaussian graphical models using the scikit-learn API In the last decade, learning networks that encode conditional independence relationships
Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Optimization Algorithm,Immune Algorithm, Artificial Fish Swarm Algorithm, Differential Evolution and TSP(Traveling salesman)
scikit-opt Swarm Intelligence in Python (Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Algorithm, Immune Algorithm,A
pip install antialiased-cnns to improve stability and accuracy
Antialiased CNNs [Project Page] [Paper] [Talk] Making Convolutional Networks Shift-Invariant Again Richard Zhang. In ICML, 2019. Quick & easy start Ru
Tez is a super-simple and lightweight Trainer for PyTorch. It also comes with many utils that you can use to tackle over 90% of deep learning projects in PyTorch.
Tez: a simple pytorch trainer NOTE: Currently, we are not accepting any pull requests! All PRs will be closed. If you want a feature or something does
High-level batteries-included neural network training library for Pytorch
Pywick High-Level Training framework for Pytorch Pywick is a high-level Pytorch training framework that aims to get you up and running quickly with st
Differentiable SDE solvers with GPU support and efficient sensitivity analysis.
PyTorch Implementation of Differentiable SDE Solvers This library provides stochastic differential equation (SDE) solvers with GPU support and efficie
PyTorch implementation of TabNet paper : https://arxiv.org/pdf/1908.07442.pdf
README TabNet : Attentive Interpretable Tabular Learning This is a pyTorch implementation of Tabnet (Arik, S. O., & Pfister, T. (2019). TabNet: Attent
A collection of extensions and data-loaders for few-shot learning & meta-learning in PyTorch
Torchmeta A collection of extensions and data-loaders for few-shot learning & meta-learning in PyTorch. Torchmeta contains popular meta-learning bench
Training RNNs as Fast as CNNs (https://arxiv.org/abs/1709.02755)
News SRU++, a new SRU variant, is released. [tech report] [blog] The experimental code and SRU++ implementation are available on the dev branch which
cuGraph - RAPIDS Graph Analytics Library
cuGraph - GPU Graph Analytics The RAPIDS cuGraph library is a collection of GPU accelerated graph algorithms that process data found in GPU DataFrames
Distributed scikit-learn meta-estimators in PySpark
sk-dist: Distributed scikit-learn meta-estimators in PySpark What is it? sk-dist is a Python package for machine learning built on top of scikit-learn
Decentralized deep learning in PyTorch. Built to train models on thousands of volunteers across the world.
Hivemind: decentralized deep learning in PyTorch Hivemind is a PyTorch library to train large neural networks across the Internet. Its intended usage
Distributed Deep learning with Keras & Spark
Elephas: Distributed Deep Learning with Keras & Spark Elephas is an extension of Keras, which allows you to run distributed deep learning models at sc
Probabilistic time series modeling in Python
GluonTS - Probabilistic Time Series Modeling in Python GluonTS is a Python toolkit for probabilistic time series modeling, built around Apache MXNet (
PySAL: Python Spatial Analysis Library Meta-Package
Python Spatial Analysis Library PySAL, the Python spatial analysis library, is an open source cross-platform library for geospatial data science with
Code for CoMatch: Semi-supervised Learning with Contrastive Graph Regularization
CoMatch: Semi-supervised Learning with Contrastive Graph Regularization (Salesforce Research) This is a PyTorch implementation of the CoMatch paper [B
Implementation of "Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner"
Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner This repository is the official implementation of Meta-rPPG: Remote Heart Ra
Open-L2O: A Comprehensive and Reproducible Benchmark for Learning to Optimize Algorithms
Open-L2O This repository establishes the first comprehensive benchmark efforts of existing learning to optimize (L2O) approaches on a number of proble
Optimising chemical reactions using machine learning
Summit Summit is a set of tools for optimising chemical processes. We’ve started by targeting reactions. What is Summit? Currently, reaction optimisat
Code for our paper at ECCV 2020: Post-Training Piecewise Linear Quantization for Deep Neural Networks
PWLQ Updates 2020/07/16 - We are working on getting permission from our institution to release our source code. We will release it once we are granted
Monocular Depth Estimation - Weighted-average prediction from multiple pre-trained depth estimation models
merged_depth runs (1) AdaBins, (2) DiverseDepth, (3) MiDaS, (4) SGDepth, and (5) Monodepth2, and calculates a weighted-average per-pixel absolute dept
Official code for the paper: Deep Graph Matching under Quadratic Constraint (CVPR 2021)
QC-DGM This is the official PyTorch implementation and models for our CVPR 2021 paper: Deep Graph Matching under Quadratic Constraint. It also contain
We have implemented shaDow-GNN as a general and powerful pipeline for graph representation learning. For more details, please find our paper titled Deep Graph Neural Networks with Shallow Subgraph Samplers, available on arXiv (https//arxiv.org/abs/2012.01380).
Deep GNN, Shallow Sampling Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, Andrey Malevich, Rajgopal Kannan, Viktor Prasanna, Long Jin, R
Convolutional Recurrent Neural Networks(CRNN) for Scene Text Recognition
CRNN_Tensorflow This is a TensorFlow implementation of a Deep Neural Network for scene text recognition. It is mainly based on the paper "An End-to-En
Open Source research tool to search, browse, analyze and explore large document collections by Semantic Search Engine and Open Source Text Mining & Text Analytics platform (Integrates ETL for document processing, OCR for images & PDF, named entity recognition for persons, organizations & locations, metadata management by thesaurus & ontologies, search user interface & search apps for fulltext search, faceted search & knowledge graph)
Open Semantic Search https://opensemanticsearch.org Integrated search server, ETL framework for document processing (crawling, text extraction, text a
A general list of resources to image text localization and recognition 场景文本位置感知与识别的论文资源与实现合集 シーンテキストの位置認識と識別のための論文リソースの要約
Scene Text Localization & Recognition Resources Read this institute-wise: English, 简体中文. Read this year-wise: English, 简体中文. Tags: [STL] (Scene Text L
OCR engine for all the languages
Description kraken is a turn-key OCR system optimized for historical and non-Latin script material. kraken's main features are: Fully trainable layout
A small C++ implementation of LSTM networks, focused on OCR.
clstm CLSTM is an implementation of the LSTM recurrent neural network model in C++, using the Eigen library for numerical computations. Status and sco