1974 Repositories
Python resilient-swarm-communications-with-meta-graph-convolutional-networks Libraries
Tensorflow-based CNN+LSTM trained with CTC-loss for OCR
Overview This collection demonstrates how to construct and train a deep, bidirectional stacked LSTM using CNN features as input with CTC loss to perfo
Code for the paper STN-OCR: A single Neural Network for Text Detection and Text Recognition
STN-OCR: A single Neural Network for Text Detection and Text Recognition This repository contains the code for the paper: STN-OCR: A single Neural Net
CUTIE (TensorFlow implementation of Convolutional Universal Text Information Extractor)
CUTIE TensorFlow implementation of the paper "CUTIE: Learning to Understand Documents with Convolutional Universal Text Information Extractor." Xiaohu
Table recognition inside douments using neural networks
TableTrainNet A simple project for training and testing table recognition in documents. This project was developed to make a neural network which reco
Use Convolutional Recurrent Neural Network to recognize the Handwritten line text image without pre segmentation into words or characters. Use CTC loss Function to train.
Handwritten Line Text Recognition using Deep Learning with Tensorflow Description Use Convolutional Recurrent Neural Network to recognize the Handwrit
Handwritten Text Recognition (HTR) system implemented with TensorFlow.
Handwritten Text Recognition with TensorFlow Update 2021: more robust model, faster dataloader, word beam search decoder also available for Windows Up
Handwritten Number Recognition using CNN and Character Segmentation
Handwritten-Number-Recognition-With-Image-Segmentation Info About this repository This Repository is aimed at reading handwritten images of numbers an
Handwriting Recognition System based on a deep Convolutional Recurrent Neural Network architecture
Handwriting Recognition System This repository is the Tensorflow implementation of the Handwriting Recognition System described in Handwriting Recogni
This repository lets you train neural networks models for performing end-to-end full-page handwriting recognition using the Apache MXNet deep learning frameworks on the IAM Dataset.
Handwritten Text Recognition (OCR) with MXNet Gluon These notebooks have been created by Jonathan Chung, as part of his internship as Applied Scientis
Page to PAGE Layout Analysis Tool
P2PaLA Page to PAGE Layout Analysis (P2PaLA) is a toolkit for Document Layout Analysis based on Neural Networks. 💥 Try our new DEMO for online baseli
Code for the paper "DewarpNet: Single-Image Document Unwarping With Stacked 3D and 2D Regression Networks" (ICCV '19)
DewarpNet This repository contains the codes for DewarpNet training. Recent Updates [May, 2020] Added evaluation images and an important note about Ma
Supplementary code for the paper "Meta-Solver for Neural Ordinary Differential Equations" https://arxiv.org/abs/2103.08561
Meta-Solver for Neural Ordinary Differential Equations Towards robust neural ODEs using parametrized solvers. Main idea Each Runge-Kutta (RK) solver w
[ICLR 2021, Spotlight] Large Scale Image Completion via Co-Modulated Generative Adversarial Networks
Large Scale Image Completion via Co-Modulated Generative Adversarial Networks, ICLR 2021 (Spotlight) Demo | Paper [NEW!] Time to play with our interac
Code for "Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks", CVPR 2021
Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks This repository contains the code that accompanies our CVPR 20
CVPR 2021: "Generating Diverse Structure for Image Inpainting With Hierarchical VQ-VAE"
Diverse Structure Inpainting ArXiv | Papar | Supplementary Material | BibTex This repository is for the CVPR 2021 paper, "Generating Diverse Structure
Official PyTorch implementation of Spatial Dependency Networks.
Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling Đorđe Miladinović Aleksandar Stanić Stefan Bauer Jürgen Schmid
[CIKM 2019] Code and dataset for "Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Prediction"
FiGNN for CTR prediction The code and data for our paper in CIKM2019: Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Predicti
DECAF: Deep Extreme Classification with Label Features
DECAF DECAF: Deep Extreme Classification with Label Features @InProceedings{Mittal21, author = "Mittal, A. and Dahiya, K. and Agrawal, S. and Sain
A spherical CNN for weather forecasting
DeepSphere-Weather - Deep Learning on the sphere for weather/climate applications. The code in this repository provides a scalable and flexible framew
Implicit Graph Neural Networks
Implicit Graph Neural Networks This repository is the official PyTorch implementation of "Implicit Graph Neural Networks". Fangda Gu*, Heng Chang*, We
Implementation of "Slow-Fast Auditory Streams for Audio Recognition, ICASSP, 2021" in PyTorch
Auditory Slow-Fast This repository implements the model proposed in the paper: Evangelos Kazakos, Arsha Nagrani, Andrew Zisserman, Dima Damen, Slow-Fa
Learning Intents behind Interactions with Knowledge Graph for Recommendation, WWW2021
Learning Intents behind Interactions with Knowledge Graph for Recommendation This is our PyTorch implementation for the paper: Xiang Wang, Tinglin Hua
Code for "Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations"
Infinitely Deep Bayesian Neural Networks with SDEs This library contains JAX and Pytorch implementations of neural ODEs and Bayesian layers for stocha
This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.
BiPointNet: Binary Neural Network for Point Clouds Created by Haotong Qin, Zhongang Cai, Mingyuan Zhang, Yifu Ding, Haiyu Zhao, Shuai Yi, Xianglong Li
Functional TensorFlow Implementation of Singular Value Decomposition for paper Fast Graph Learning
tf-fsvd TensorFlow Implementation of Functional Singular Value Decomposition for paper Fast Graph Learning with Unique Optimal Solutions Cite If you f
Official implementation of Self-supervised Graph Attention Networks (SuperGAT), ICLR 2021.
SuperGAT Official implementation of Self-supervised Graph Attention Networks (SuperGAT). This model is presented at How to Find Your Friendly Neighbor
(CVPR2021) ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic
ClassSR (CVPR2021) ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic Paper Authors: Xiangtao Kong, Hengyuan
Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification.
Easy Few-Shot Learning Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification. This repository is made for you
Open standard for machine learning interoperability
Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides
Image augmentation library in Python for machine learning.
Augmentor is an image augmentation library in Python for machine learning. It aims to be a standalone library that is platform and framework independe
A research toolkit for particle swarm optimization in Python
PySwarms is an extensible research toolkit for particle swarm optimization (PSO) in Python. It is intended for swarm intelligence researchers, practit
🎯 A comprehensive gradient-free optimization framework written in Python
Solid is a Python framework for gradient-free optimization. It contains basic versions of many of the most common optimization algorithms that do not
A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation
Aboleth A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation [1] with stochastic gradient variational Bayes
Scikit-learn compatible estimation of general graphical models
skggm : Gaussian graphical models using the scikit-learn API In the last decade, learning networks that encode conditional independence relationships
Deep Reinforcement Learning for Keras.
Deep Reinforcement Learning for Keras What is it? keras-rl implements some state-of-the art deep reinforcement learning algorithms in Python and seaml
Python Library for Model Interpretation/Explanations
Skater Skater is a unified framework to enable Model Interpretation for all forms of model to help one build an Interpretable machine learning system
Transfer Learning library for Deep Neural Networks.
Transfer and meta-learning in Python Each folder in this repository corresponds to a method or tool for transfer/meta-learning. xfer-ml is a standalon
A clear, concise, simple yet powerful and efficient API for deep learning.
The Gluon API Specification The Gluon API specification is an effort to improve speed, flexibility, and accessibility of deep learning technology for
QKeras: a quantization deep learning library for Tensorflow Keras
QKeras github.com/google/qkeras QKeras 0.8 highlights: Automatic quantization using QKeras; Stochastic behavior (including stochastic rouding) is disa
Graph Neural Networks with Keras and Tensorflow 2.
Welcome to Spektral Spektral is a Python library for graph deep learning, based on the Keras API and TensorFlow 2. The main goal of this project is to
Distributed Deep learning with Keras & Spark
Elephas: Distributed Deep Learning with Keras & Spark Elephas is an extension of Keras, which allows you to run distributed deep learning models at sc
Keras community contributions
keras-contrib : Keras community contributions Keras-contrib is deprecated. Use TensorFlow Addons. The future of Keras-contrib: We're migrating to tens
Ludwig is a toolbox that allows to train and evaluate deep learning models without the need to write code.
Translated in 🇰🇷 Korean/ Ludwig is a toolbox that allows users to train and test deep learning models without the need to write code. It is built on
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility
Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built
Geometric Deep Learning Extension Library for PyTorch
Documentation | Paper | Colab Notebooks | External Resources | OGB Examples PyTorch Geometric (PyG) is a geometric deep learning extension library for
High performance implementation of Extreme Learning Machines (fast randomized neural networks).
High Performance toolbox for Extreme Learning Machines. Extreme learning machines (ELM) are a particular kind of Artificial Neural Networks, which sol
Automated Machine Learning with scikit-learn
auto-sklearn auto-sklearn is an automated machine learning toolkit and a drop-in replacement for a scikit-learn estimator. Find the documentation here
Little Ball of Fur - A graph sampling extension library for NetworKit and NetworkX (CIKM 2020)
Little Ball of Fur is a graph sampling extension library for Python. Please look at the Documentation, relevant Paper, Promo video and External Resour
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)
Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext
EGNN - Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch
EGNN - Pytorch Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch. May be eventually used for Alphafold2 replication. This
GANsformer: Generative Adversarial Transformers Drew A
GANsformer: Generative Adversarial Transformers Drew A. Hudson* & C. Lawrence Zitnick *I wish to thank Christopher D. Manning for the fruitf
Implementation of E(n)-Transformer, which extends the ideas of Welling's E(n)-Equivariant Graph Neural Network to attention
E(n)-Equivariant Transformer (wip) Implementation of E(n)-Equivariant Transformer, which extends the ideas from Welling's E(n)-Equivariant G
A Python library that helps data scientists to infer causation rather than observing correlation.
A Python library that helps data scientists to infer causation rather than observing correlation.
StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation.
StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation.
SENAITE Meta Package
SENAITE LIMS Meta Installation Package What does SENAITE mean? SENAITE is a beautiful trigonal, oil-green to greenish black crystal, with almost the h
Social Distancing Detector using deep learning and capable to run on edge AI devices such as NVIDIA Jetson, Google Coral, and more.
Smart Social Distancing Smart Social Distancing Introduction Getting Started Prerequisites Usage Processor Optional Parameters Configuring AWS credent
A Python library created to assist programmers with complex mathematical functions
libmaths was created not only as a learning experience for me, but as a way to make mathematical models in seconds for Python users using mat
This repository contains the code used for Predicting Patient Outcomes with Graph Representation Learning (https://arxiv.org/abs/2101.03940).
Predicting Patient Outcomes with Graph Representation Learning This repository contains the code used for Predicting Patient Outcomes with Graph Repre
Generate a roam research like Network Graph view from your Notion pages.
Notion Graph View Export Notion pages to a Roam Research like graph view.
A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing"
A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing" (WebConf 2021). Abstract In this work we propose Pathfind
SSD: Single Shot MultiBox Detector pytorch implementation focusing on simplicity
SSD: Single Shot MultiBox Detector Introduction Here is my pytorch implementation of 2 models: SSD-Resnet50 and SSDLite-MobilenetV2.
BitPack is a practical tool to efficiently save ultra-low precision/mixed-precision quantized models.
BitPack is a practical tool that can efficiently save quantized neural network models with mixed bitwidth.
This is an unofficial PyTorch implementation of Meta Pseudo Labels
This is an unofficial PyTorch implementation of Meta Pseudo Labels. The official Tensorflow implementation is here.
BaseSpec is a system that performs a comparative analysis of baseband implementation and the specifications of cellular networks.
BaseSpec is a system that performs a comparative analysis of baseband implementation and the specifications of cellular networks. The key intuition of BaseSpec is that a message decoder in baseband software embeds the protocol specification in a machine-friendly structure to parse incoming messages;
The first machine learning framework that encourages learning ML concepts instead of memorizing class functions.
SeaLion is designed to teach today's aspiring ml-engineers the popular machine learning concepts of today in a way that gives both intuition and ways of application. We do this through concise algorithms that do the job in the least jargon possible and examples to guide you through every step of the way.
Official PyTorch implementation of Joint Object Detection and Multi-Object Tracking with Graph Neural Networks
This is the official PyTorch implementation of our paper: "Joint Object Detection and Multi-Object Tracking with Graph Neural Networks". Our project website and video demos are here.
Learning to Initialize Neural Networks for Stable and Efficient Training
GradInit This repository hosts the code for experiments in the paper, GradInit: Learning to Initialize Neural Networks for Stable and Efficient Traini
Puzzle-CAM: Improved localization via matching partial and full features.
Puzzle-CAM The official implementation of "Puzzle-CAM: Improved localization via matching partial and full features".
A command line utility for tracking a stock market portfolio. Primarily featuring high resolution braille graphs.
A command line stock market / portfolio tracker originally insipred by Ericm's Stonks program, featuring unicode for incredibly high detailed graphs even in a terminal.
Plots is a graph plotting app for GNOME.
Plots is a graph plotting app for GNOME. Plots makes it easy to visualise mathematical formulae. In addition to basic arithmetic operations, it supports trigonometric, hyperbolic, exponential and logarithmic functions, as well as arbitrary sums and products.Plots is designed to integrate well with the GNOME desktop and takes advantage of modern hardware using OpenGL, and currently supports OpenGL 3.3+.
Named-entity recognition using neural networks. Easy-to-use and state-of-the-art results.
NeuroNER NeuroNER is a program that performs named-entity recognition (NER). Website: neuroner.com. This page gives step-by-step instructions to insta
Sequence-to-sequence framework with a focus on Neural Machine Translation based on Apache MXNet
Sockeye This package contains the Sockeye project, an open-source sequence-to-sequence framework for Neural Machine Translation based on Apache MXNet
A model library for exploring state-of-the-art deep learning topologies and techniques for optimizing Natural Language Processing neural networks
A Deep Learning NLP/NLU library by Intel® AI Lab Overview | Models | Installation | Examples | Documentation | Tutorials | Contributing NLP Architect
✨Fast Coreference Resolution in spaCy with Neural Networks
✨ NeuralCoref 4.0: Coreference Resolution in spaCy with Neural Networks. NeuralCoref is a pipeline extension for spaCy 2.1+ which annotates and resolv
Python implementation of TextRank for phrase extraction and summarization of text documents
PyTextRank PyTextRank is a Python implementation of TextRank as a spaCy pipeline extension, used to: extract the top-ranked phrases from text document
An open source library for deep learning end-to-end dialog systems and chatbots.
DeepPavlov is an open-source conversational AI library built on TensorFlow, Keras and PyTorch. DeepPavlov is designed for development of production re
💫 Industrial-strength Natural Language Processing (NLP) in Python
spaCy: Industrial-strength NLP spaCy is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest researc
Dimensionality reduction in very large datasets using Siamese Networks
ivis Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets. Ivis
The interactive graphing library for Python (includes Plotly Express) :sparkles:
plotly.py Latest Release User forum PyPI Downloads License Data Science Workspaces Our recommended IDE for Plotly’s Python graphing library is Dash En
DeepSpeech is an open source embedded (offline, on-device) speech-to-text engine which can run in real time on devices ranging from a Raspberry Pi 4 to high power GPU servers.
Project DeepSpeech DeepSpeech is an open-source Speech-To-Text engine, using a model trained by machine learning techniques based on Baidu's Deep Spee
Read music meta data and length of MP3, OGG, OPUS, MP4, M4A, FLAC, WMA and Wave files with python 2 or 3
tinytag tinytag is a library for reading music meta data of MP3, OGG, OPUS, MP4, M4A, FLAC, WMA and Wave files with python Install pip install tinytag
Official implementation of the ICLR 2021 paper
You Only Need Adversarial Supervision for Semantic Image Synthesis Official PyTorch implementation of the ICLR 2021 paper "You Only Need Adversarial S
Efficient 3D Backbone Network for Temporal Modeling
VoV3D is an efficient and effective 3D backbone network for temporal modeling implemented on top of PySlowFast. Diverse Temporal Aggregation and
DeepMind Alchemy task environment: a meta-reinforcement learning benchmark
The DeepMind Alchemy environment is a meta-reinforcement learning benchmark that presents tasks sampled from a task distribution with deep underlying structure.
Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks
SA-Net: Shuffle Attention for Deep Convolutional Neural Networks (paper) By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software T
[ICLR'21] Counterfactual Generative Networks
This repository contains the code for the ICLR 2021 paper "Counterfactual Generative Networks" by Axel Sauer and Andreas Geiger. If you want to take the CGN for a spin and generate counterfactual images, you can try out the Colab below.
MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification
MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification
This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.
This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.
Keras implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping
Keras implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping
Efficient neural networks for analog audio effect modeling
micro-TCN Efficient neural networks for audio effect modeling
Named-entity recognition using neural networks. Easy-to-use and state-of-the-art results.
NeuroNER NeuroNER is a program that performs named-entity recognition (NER). Website: neuroner.com. This page gives step-by-step instructions to insta
Sequence-to-sequence framework with a focus on Neural Machine Translation based on Apache MXNet
Sockeye This package contains the Sockeye project, an open-source sequence-to-sequence framework for Neural Machine Translation based on Apache MXNet
A model library for exploring state-of-the-art deep learning topologies and techniques for optimizing Natural Language Processing neural networks
A Deep Learning NLP/NLU library by Intel® AI Lab Overview | Models | Installation | Examples | Documentation | Tutorials | Contributing NLP Architect
✨Fast Coreference Resolution in spaCy with Neural Networks
✨ NeuralCoref 4.0: Coreference Resolution in spaCy with Neural Networks. NeuralCoref is a pipeline extension for spaCy 2.1+ which annotates and resolv
Python implementation of TextRank for phrase extraction and summarization of text documents
PyTextRank PyTextRank is a Python implementation of TextRank as a spaCy pipeline extension, used to: extract the top-ranked phrases from text document
An open source library for deep learning end-to-end dialog systems and chatbots.
DeepPavlov is an open-source conversational AI library built on TensorFlow, Keras and PyTorch. DeepPavlov is designed for development of production re
💫 Industrial-strength Natural Language Processing (NLP) in Python
spaCy: Industrial-strength NLP spaCy is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest researc
Dimensionality reduction in very large datasets using Siamese Networks
ivis Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets. Ivis
The interactive graphing library for Python (includes Plotly Express) :sparkles:
plotly.py Latest Release User forum PyPI Downloads License Data Science Workspaces Our recommended IDE for Plotly’s Python graphing library is Dash En
NeuPy is a Tensorflow based python library for prototyping and building neural networks
NeuPy v0.8.2 NeuPy is a python library for prototyping and building neural networks. NeuPy uses Tensorflow as a computational backend for deep learnin