896 Repositories
Python semi-supervised-gan Libraries
Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR
UniSpeech The family of UniSpeech: UniSpeech (ICML 2021): Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR UniSpeech-
PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech
PortaSpeech - PyTorch Implementation PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech. Model Size Module Nor
DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision
The Official PyTorch Implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision
Learning to Reach Goals via Iterated Supervised Learning
Vanilla GCSL This repository contains a vanilla implementation of "Learning to Reach Goals via Iterated Supervised Learning" proposed by Dibya Gosh et
Video Autoencoder: self-supervised disentanglement of 3D structure and motion
Video Autoencoder: self-supervised disentanglement of 3D structure and motion This repository contains the code (in PyTorch) for the model introduced
PortaSpeech - PyTorch Implementation
PortaSpeech - PyTorch Implementation PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech. Model Size Module Nor
PyTorch implementation of the WarpedGANSpace: Finding non-linear RBF paths in GAN latent space (ICCV 2021)
Authors official PyTorch implementation of the "WarpedGANSpace: Finding non-linear RBF paths in GAN latent space" [ICCV 2021].
deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.
deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.
Trying to understand alias-free-gan.
alias-free-gan-explanation Trying to understand alias-free-gan in my own way. [Chinese Version 中文版本] CC-BY-4.0 License. Tzu-Heng Lin motivation of thi
An official reimplementation of the method described in the INTERSPEECH 2021 paper - Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.
Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di
[ICCV 2021] Excavating the Potential Capacity of Self-Supervised Monocular Depth Estimation
EPCDepth EPCDepth is a self-supervised monocular depth estimation model, whose supervision is coming from the other image in a stereo pair. Details ar
A curated (most recent) list of resources for Learning with Noisy Labels
A curated (most recent) list of resources for Learning with Noisy Labels
Self-Supervised depth kalilia
Self-Supervised depth kalilia
GANimation: Anatomically-aware Facial Animation from a Single Image (ECCV'18 Oral) [PyTorch]
GANimation: Anatomically-aware Facial Animation from a Single Image [Project] [Paper] Official implementation of GANimation. In this work we introduce
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥
face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa
(ICCV 2021) Official code of "Dressing in Order: Recurrent Person Image Generation for Pose Transfer, Virtual Try-on and Outfit Editing."
Dressing in Order (DiOr) 👚 [Paper] 👖 [Webpage] 👗 [Running this code] The official implementation of "Dressing in Order: Recurrent Person Image Gene
simple generative adversarial network (GAN) using PyTorch
Generative Adversarial Networks (GANs) in PyTorch Running Run the sample code by typing: ./gan_pytorch.py ...and you'll train two nets to battle it o
A self-supervised 3D representation learning framework named viewpoint bottleneck.
Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck Paper Created by Liyi Luo, Beiwen Tian, Hao Zhao and Guyue Zhou from Institute for AI In
Semi-supervised Domain Adaptation via Minimax Entropy
Semi-supervised Domain Adaptation via Minimax Entropy (ICCV 2019) Install pip install -r requirements.txt The code is written for Pytorch 0.4.0, but s
Semi Supervised Learning for Medical Image Segmentation, a collection of literature reviews and code implementations.
Semi-supervised-learning-for-medical-image-segmentation. Recently, semi-supervised image segmentation has become a hot topic in medical image computin
WRENCH: Weak supeRvision bENCHmark
🔧 What is it? Wrench is a benchmark platform containing diverse weak supervision tasks. It also provides a common and easy framework for development
GLaRA: Graph-based Labeling Rule Augmentation for Weakly Supervised Named Entity Recognition
GLaRA: Graph-based Labeling Rule Augmentation for Weakly Supervised Named Entity Recognition
A Non-Autoregressive Transformer based TTS, supporting a family of SOTA transformers with supervised and unsupervised duration modelings. This project grows with the research community, aiming to achieve the ultimate TTS.
A Non-Autoregressive Transformer based TTS, supporting a family of SOTA transformers with supervised and unsupervised duration modelings. This project grows with the research community, aiming to achieve the ultimate TTS.
Scripts for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation and a convolutional neural network (CNN) for image classification
About subwAI subwAI - a project for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation
The PASS dataset: pretrained models and how to get the data - PASS: Pictures without humAns for Self-Supervised Pretraining
The PASS dataset: pretrained models and how to get the data - PASS: Pictures without humAns for Self-Supervised Pretraining
Apply Graph Self-Supervised Learning methods to graph-level task(TUDataset, MolculeNet Datset)
Graphlevel-SSL Overview Apply Graph Self-Supervised Learning methods to graph-level task(TUDataset, MolculeNet Dataset). It is unified framework to co
[ICCV-2021] An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation
An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation (ICCV 2021) Introduction This is an official pytorch implemen
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥
TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens
Image-to-Image Translation in PyTorch
CycleGAN and pix2pix in PyTorch New: Please check out contrastive-unpaired-translation (CUT), our new unpaired image-to-image translation model that e
Code for the paper "Adversarial Generator-Encoder Networks"
This repository contains code for the paper "Adversarial Generator-Encoder Networks" (AAAI'18) by Dmitry Ulyanov, Andrea Vedaldi, Victor Lempitsky. Pr
Code accompanying the paper "Wasserstein GAN"
Wasserstein GAN Code accompanying the paper "Wasserstein GAN" A few notes The first time running on the LSUN dataset it can take a long time (up to an
PyTorch implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"
DiscoGAN in PyTorch PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. * All samples in READM
Hierarchical unsupervised and semi-supervised topic models for sparse count data with CorEx
Anchored CorEx: Hierarchical Topic Modeling with Minimal Domain Knowledge Correlation Explanation (CorEx) is a topic model that yields rich topics tha
Official repository for the paper "Instance-Conditioned GAN"
Official repository for the paper "Instance-Conditioned GAN" by Arantxa Casanova, Marlene Careil, Jakob Verbeek, Michał Drożdżal, Adriana Romero-Soriano.
Supervised Contrastive Learning for Downstream Optimized Sequence Representations
SupCL-Seq 📖 Supervised Contrastive Learning for Downstream Optimized Sequence representations (SupCS-Seq) accepted to be published in EMNLP 2021, ext
A self-supervised 3D representation learning framework named viewpoint bottleneck.
Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck Paper Created by Liyi Luo, Beiwen Tian, Hao Zhao and Guyue Zhou from Institute for AI In
Code for the paper "Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds" (ICCV 2021)
Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds This is the official code implementation for the paper "Spatio-temporal Se
Semi-Supervised Learning, Object Detection, ICCV2021
End-to-End Semi-Supervised Object Detection with Soft Teacher By Mengde Xu*, Zheng Zhang*, Han Hu, Jianfeng Wang, Lijuan Wang, Fangyun Wei, Xiang Bai,
Object-aware Contrastive Learning for Debiased Scene Representation
Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo
Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation
Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation The code of: Cross-Image Region Mining with Region Proto
[EMNLP 2021] Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training
RoSTER The source code used for Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training, p
UniLM AI - Large-scale Self-supervised Pre-training across Tasks, Languages, and Modalities
Pre-trained (foundation) models across tasks (understanding, generation and translation), languages (100+ languages), and modalities (language, image, audio, vision + language, audio + language, etc.)
This repo is to be freely used by ML devs to check the GAN performances without coding from scratch.
GANs for Fun Created because I can! GOAL The goal of this repo is to be freely used by ML devs to check the GAN performances without coding from scrat
Code and checkpoints for training the transformer-based Table QA models introduced in the paper TAPAS: Weakly Supervised Table Parsing via Pre-training.
End-to-end neural table-text understanding models.
✨Rubrix is a production-ready Python framework for exploring, annotating, and managing data in NLP projects.
✨A Python framework to explore, label, and monitor data for NLP projects
Reading list for research topics in sound event detection
Sound event detection aims at processing the continuous acoustic signal and converting it into symbolic descriptions of the corresponding sound events present at the auditory scene.
Self-Supervised Pillar Motion Learning for Autonomous Driving (CVPR 2021)
Self-Supervised Pillar Motion Learning for Autonomous Driving Chenxu Luo, Xiaodong Yang, Alan Yuille Self-Supervised Pillar Motion Learning for Autono
A Simplied Framework of GAN Inversion
Framework of GAN Inversion Introcuction You can implement your own inversion idea using our repo. We offer a full range of tuning settings (in hparams
Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.
COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype
Normalization Matters in Weakly Supervised Object Localization (ICCV 2021)
Normalization Matters in Weakly Supervised Object Localization (ICCV 2021) 99% of the code in this repository originates from this link. ICCV 2021 pap
GeDML is an easy-to-use generalized deep metric learning library
GeDML is an easy-to-use generalized deep metric learning library
code for paper "Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning" by Zhongzheng Ren*, Raymond A. Yeh*, Alexander G. Schwing.
Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning Overview This code is for paper: Not All Unlabeled Data are Equa
[ICCV'2021] "SSH: A Self-Supervised Framework for Image Harmonization", Yifan Jiang, He Zhang, Jianming Zhang, Yilin Wang, Zhe Lin, Kalyan Sunkavalli, Simon Chen, Sohrab Amirghodsi, Sarah Kong, Zhangyang Wang
SSH: A Self-Supervised Framework for Image Harmonization (ICCV 2021) code for SSH Representative Examples Main Pipeline RealHM DataSet Google Drive Pr
PaddleViT: State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 2.0+
PaddlePaddle Vision Transformers State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 🤖 PaddlePaddle Visual Transformers (PaddleViT or
sssegmentation is a general framework for our research on strongly supervised semantic segmentation.
sssegmentation is a general framework for our research on strongly supervised semantic segmentation.
Unofficial PyTorch Implementation of UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation
UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation This is an unofficial PyTorch
The source code of CVPR 2019 paper "Deep Exemplar-based Video Colorization".
Deep Exemplar-based Video Colorization (Pytorch Implementation) Paper | Pretrained Model | Youtube video 🔥 | Colab demo Deep Exemplar-based Video Col
LLVIP: A Visible-infrared Paired Dataset for Low-light Vision
LLVIP: A Visible-infrared Paired Dataset for Low-light Vision Project | Arxiv | Abstract It is very challenging for various visual tasks such as image
Change is Everywhere: Single-Temporal Supervised Object Change Detection in Remote Sensing Imagery (ICCV 2021)
Change is Everywhere Single-Temporal Supervised Object Change Detection in Remote Sensing Imagery by Zhuo Zheng, Ailong Ma, Liangpei Zhang and Yanfei
StarGANv2-VC: A Diverse, Unsupervised, Non-parallel Framework for Natural-Sounding Voice Conversion
StarGANv2-VC: A Diverse, Unsupervised, Non-parallel Framework for Natural-Sounding Voice Conversion Yinghao Aaron Li, Ali Zare, Nima Mesgarani We pres
PyTorch Implementation of CycleGAN and SSGAN for Domain Transfer (Minimal)
MNIST-to-SVHN and SVHN-to-MNIST PyTorch Implementation of CycleGAN and Semi-Supervised GAN for Domain Transfer. Prerequites Python 3.5 PyTorch 0.1.12
Unsupervised Image-to-Image Translation
UNIT: UNsupervised Image-to-image Translation Networks Imaginaire Repository We have a reimplementation of the UNIT method that is more performant. It
PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML)
pytorch-maml This is a PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML): https://arxiv
Collection of generative models in Pytorch version.
pytorch-generative-model-collections Original : [Tensorflow version] Pytorch implementation of various GANs. This repository was re-implemented with r
This is the offical website for paper ''Category-consistent deep network learning for accurate vehicle logo recognition''
The Pytorch Implementation of Category-consistent deep network learning for accurate vehicle logo recognition This is the offical website for paper ''
WRENCH: Weak supeRvision bENCHmark
🔧 What is it? Wrench is a benchmark platform containing diverse weak supervision tasks. It also provides a common and easy framework for development
Unofficial Alias-Free GAN implementation. Based on rosinality's version with expanded training and inference options.
Alias-Free GAN An unofficial version of Alias-Free Generative Adversarial Networks (https://arxiv.org/abs/2106.12423). This repository was heavily bas
Simple torch.nn.module implementation of Alias-Free-GAN style filter and resample
Alias-Free-Torch Simple torch module implementation of Alias-Free GAN. This repository including Alias-Free GAN style lowpass sinc filter @filter.py A
GAN encoders in PyTorch that could match PGGAN, StyleGAN v1/v2, and BigGAN. Code also integrates the implementation of these GANs.
MTV-TSA: Adaptable GAN Encoders for Image Reconstruction via Multi-type Latent Vectors with Two-scale Attentions. This is the official code release fo
Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal Action Localization' (ICCV-21 Oral)
Learning-Action-Completeness-from-Points Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal A
PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation
StructDepth PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimat
Experiments on Flood Segmentation on Sentinel-1 SAR Imagery with Cyclical Pseudo Labeling and Noisy Student Training
Flood Detection Challenge This repository contains code for our submission to the ETCI 2021 Competition on Flood Detection (Winning Solution #2). Acco
ST++: Make Self-training Work Better for Semi-supervised Semantic Segmentation
ST++ This is the official PyTorch implementation of our paper: ST++: Make Self-training Work Better for Semi-supervised Semantic Segmentation. Lihe Ya
A PyTorch implementation of "Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning", IJCAI-21
MERIT A PyTorch implementation of our IJCAI-21 paper Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning. Depen
Learning Generative Models of Textured 3D Meshes from Real-World Images, ICCV 2021
Learning Generative Models of Textured 3D Meshes from Real-World Images This is the reference implementation of "Learning Generative Models of Texture
Online Multi-Granularity Distillation for GAN Compression (ICCV2021)
Online Multi-Granularity Distillation for GAN Compression (ICCV2021) This repository contains the pytorch codes and trained models described in the IC
A graphical Semi-automatic annotation tool based on labelImg and Yolov5
💕YOLOV5 semi-automatic annotation tool (Based on labelImg)
PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT.
MoCo v3 for Self-supervised ResNet and ViT Introduction This is a PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT. The original M
Parametric Contrastive Learning (ICCV2021)
Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or
A weakly-supervised scene graph generation codebase. The implementation of our CVPR2021 paper ``Linguistic Structures as Weak Supervision for Visual Scene Graph Generation''
README.md shall be finished soon. WSSGG 0 Overview 1 Installation 1.1 Faster-RCNN 1.2 Language Parser 1.3 GloVe Embeddings 2 Settings 2.1 VG-GT-Graph
Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN", accepted to ACM MM 2021 BNI Track.
RecycleD Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN
Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data
Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data arXiv This is the code base for weakly supervised NER. We provide a
[TOG 2021] PyTorch implementation for the paper: SofGAN: A Portrait Image Generator with Dynamic Styling.
This repository contains the official PyTorch implementation for the paper: SofGAN: A Portrait Image Generator with Dynamic Styling. We propose a SofGAN image generator to decouple the latent space of portraits into two subspaces: a geometry space and a texture space. Experiments on SofGAN show that our system can generate high quality portrait images with independently controllable geometry and texture attributes.
We evaluate our method on different datasets (including ShapeNet, CUB-200-2011, and Pascal3D+) and achieve state-of-the-art results, outperforming all the other supervised and unsupervised methods and 3D representations, all in terms of performance, accuracy, and training time.
An Effective Loss Function for Generating 3D Models from Single 2D Image without Rendering Papers with code | Paper Nikola Zubić Pietro Lio University
This is an official implementation for "Self-Supervised Learning with Swin Transformers".
Self-Supervised Learning with Vision Transformers By Zhenda Xie*, Yutong Lin*, Zhuliang Yao, Zheng Zhang, Qi Dai, Yue Cao and Han Hu This repo is the
StarGAN-ZSVC: Unofficial PyTorch Implementation
This repository is an unofficial PyTorch implementation of StarGAN-ZSVC by Matthew Baas and Herman Kamper. This repository provides both model architectures and the code to inference or train them.
Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, Pattern Recognition
USDAN The implementation of Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, which is accepte
Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary Differential Equations
ODE GAN (Prototype) in PyTorch Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary
Code for the paper: Sketch Your Own GAN
Sketch Your Own GAN Project | Paper | Youtube Our method takes in one or a few hand-drawn sketches and customizes an off-the-shelf GAN to match the in
Code for generating a single image pretraining dataset
Single Image Pretraining of Visual Representations As shown in the paper A critical analysis of self-supervision, or what we can learn from a single i
Video Contrastive Learning with Global Context
Video Contrastive Learning with Global Context (VCLR) This is the official PyTorch implementation of our VCLR paper. Install dependencies environments
Pytorch implementation of CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generation"
MUST-GAN Code | paper The Pytorch implementation of our CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generat
Hierarchical Metadata-Aware Document Categorization under Weak Supervision (WSDM'21)
Hierarchical Metadata-Aware Document Categorization under Weak Supervision This project provides a weakly supervised framework for hierarchical metada
Code for the paper "TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks"
TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks This is a Python3 / Pytorch implementation of TadGAN paper. The associated
Implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training
SemCo The official pytorch implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training
Object-aware Contrastive Learning for Debiased Scene Representation
Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo
Unofficial PyTorch Implementation of UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation
UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation This is an unofficial PyTorch
Image Deblurring using Generative Adversarial Networks
DeblurGAN arXiv Paper Version Pytorch implementation of the paper DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks. Our netwo
Synthesizing and manipulating 2048x1024 images with conditional GANs
pix2pixHD Project | Youtube | Paper Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic image-to-image translatio
PyTorch implementation of VAGAN: Visual Feature Attribution Using Wasserstein GANs
PyTorch implementation of VAGAN: Visual Feature Attribution Using Wasserstein GANs This code aims to reproduce results obtained in the paper "Visual F