250 Repositories
Python stylegan2-clip-approach Libraries
Official implementation for "Style Transformer for Image Inversion and Editing" (CVPR 2022)
Style Transformer for Image Inversion and Editing (CVPR2022) https://arxiv.org/abs/2203.07932 Existing GAN inversion methods fail to provide latent co
Official implementation of the paper 'Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution' in CVPR 2022
LDL Paper | Supplementary Material Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution Jie Liang*, Hu
Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR 2022)
Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR2022)[paper] Authors: Chenhang He, Ruihuang Li, Shuai Li, L
One line to host them all. Bootstrap your image search case in minutes.
One line to host them all. Bootstrap your image search case in minutes. Survey NOW gives the world access to customized neural image search in just on
A multi-lingual approach to AllenNLP CoReference Resolution along with a wrapper for spaCy.
Crosslingual Coreference Coreference is amazing but the data required for training a model is very scarce. In our case, the available training for non
Python package to generate image embeddings with CLIP without PyTorch/TensorFlow
imgbeddings A Python package to generate embedding vectors from images, using OpenAI's robust CLIP model via Hugging Face transformers. These image em
RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP
[Paper] [Хабр] [Model Card] [Colab] [Kaggle] RuDOLPH 🦌 🎄 ☃️ One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP Russian Diffusio
VQGAN+CLIP Colab Notebook with user-friendly interface.
VQGAN+CLIP and other image generation system VQGAN+CLIP Colab Notebook with user-friendly interface. Latest Notebook: Mse regulized zquantize Notebook
All of the figures and notebooks for my deep learning book, for free!
"Deep Learning - A Visual Approach" by Andrew Glassner This is the official repo for my book from No Starch Press. Ordering the book My book is called
StorSeismic: An approach to pre-train a neural network to store seismic data features
StorSeismic: An approach to pre-train a neural network to store seismic data features This repository contains codes and resources to reproduce experi
Unified API to facilitate usage of pre-trained "perceptor" models, a la CLIP
mmc installation git clone https://github.com/dmarx/Multi-Modal-Comparators cd 'Multi-Modal-Comparators' pip install poetry poetry build pip install d
Language Models Can See: Plugging Visual Controls in Text Generation
Language Models Can See: Plugging Visual Controls in Text Generation Authors: Yixuan Su, Tian Lan, Yahui Liu, Fangyu Liu, Dani Yogatama, Yan Wang, Lin
Official Pytorch implementation of the paper "MotionCLIP: Exposing Human Motion Generation to CLIP Space"
MotionCLIP Official Pytorch implementation of the paper "MotionCLIP: Exposing Human Motion Generation to CLIP Space". Please visit our webpage for mor
MarcoPolo is a clustering-free approach to the exploration of bimodally expressed genes along with group information in single-cell RNA-seq data
MarcoPolo is a method to discover differentially expressed genes in single-cell RNA-seq data without depending on prior clustering Overview MarcoPolo
CLIP (Contrastive Language–Image Pre-training) for Italian
Italian CLIP CLIP (Radford et al., 2021) is a multimodal model that can learn to represent images and text jointly in the same space. In this project,
KoCLIP: Korean port of OpenAI CLIP, in Flax
KoCLIP This repository contains code for KoCLIP, a Korean port of OpenAI's CLIP. This project was conducted as part of Hugging Face's Flax/JAX communi
A Real-ESRGAN equipped Colab notebook for CLIP Guided Diffusion
#360Diffusion automatically upscales your CLIP Guided Diffusion outputs using Real-ESRGAN. Latest Update: Alpha 1.61 [Main Branch] - 01/11/22 Layout a
An ever-growing playground of notebooks showcasing CLIP's impressive zero-shot capabilities.
Playground for CLIP-like models Demo Colab Link GradCAM Visualization Naive Zero-shot Detection Smarter Zero-shot Detection Captcha Solver Changelog 2
Implements VQGAN+CLIP for image and video generation, and style transfers, based on text and image prompts. Emphasis on ease-of-use, documentation, and smooth video creation.
VQGAN-CLIP-GENERATOR Overview This is a package (with available notebook) for running VQGAN+CLIP locally, with a focus on ease of use, good documentat
CLIPfa: Connecting Farsi Text and Images
CLIPfa: Connecting Farsi Text and Images OpenAI released the paper Learning Transferable Visual Models From Natural Language Supervision in which they
Reproduces the results of the paper "Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations".
Finite basis physics-informed neural networks (FBPINNs) This repository reproduces the results of the paper Finite Basis Physics-Informed Neural Netwo
PromptDet: Expand Your Detector Vocabulary with Uncurated Images
PromptDet: Expand Your Detector Vocabulary with Uncurated Images Paper Website Introduction The goal of this work is to establish a scalable pipeline
Official Implementation of CVPR 2022 paper: "Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning"
(CVPR 2022) Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning ArXiv This repo contains Official Implementat
CLIP-GEN: Language-Free Training of a Text-to-Image Generator with CLIP
CLIP-GEN [简体中文][English] 本项目在萤火二号集群上用 PyTorch 实现了论文 《CLIP-GEN: Language-Free Training of a Text-to-Image Generator with CLIP》。 CLIP-GEN 是一个 Language-F
[arXiv22] Disentangled Representation Learning for Text-Video Retrieval
Disentangled Representation Learning for Text-Video Retrieval This is a PyTorch implementation of the paper Disentangled Representation Learning for T
RODD: A Self-Supervised Approach for Robust Out-of-Distribution Detection
RODD Official Implementation of 2022 CVPRW Paper RODD: A Self-Supervised Approach for Robust Out-of-Distribution Detection Introduction: Recent studie
In this project, RandomOverSampler and SMOTE algorithms were used to perform oversampling, ClusterCentroids algorithm was used to undersampling, SMOTEENN algorithm was applied as a combinatorial approach of over- and undersampling of credit card credit dataset from LendingClub. Machine learning models - BalancedRandomForestClassifier and EasyEnsembleClassifier were used to predict credit risk.
Overview of Credit Card Analysis In this project, RandomOverSampler and SMOTE algorithms were used to perform oversampling, ClusterCentroids algorithm
Monocular 3D Object Detection: An Extrinsic Parameter Free Approach (CVPR2021)
Monocular 3D Object Detection: An Extrinsic Parameter Free Approach (CVPR2021) Yunsong Zhou, Yuan He, Hongzi Zhu, Cheng Wang, Hongyang Li, Qinhong Jia
A python scripts that uses 3 different feature extraction methods such as SIFT, SURF and ORB to find a book in a video clip and project trailer of a movie based on that book, on to it.
A python scripts that uses 3 different feature extraction methods such as SIFT, SURF and ORB to find a book in a video clip and project trailer of a movie based on that book, on to it.
MRC approach for Aspect-based Sentiment Analysis (ABSA)
B-MRC MRC approach for Aspect-based Sentiment Analysis (ABSA) Paper: Bidirectional Machine Reading Comprehension for Aspect Sentiment Triplet Extracti
This is a modification of the OpenAI-CLIP repository of moein-shariatnia
This is a modification of the OpenAI-CLIP repository of moein-shariatnia
A Bayesian cognition approach for belief updating of correlation judgement through uncertainty visualizations
Overview Code and supplemental materials for Karduni et al., 2020 IEEE Vis. "A Bayesian cognition approach for belief updating of correlation judgemen
A collection of Jupyter notebooks to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.
StyleGAN3 CLIP-based guidance StyleGAN3 + CLIP StyleGAN3 + inversion + CLIP This repo is a collection of Jupyter notebooks made to easily play with St
A web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks
This project is a web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks. Thanks for NVlabs' excelle
A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution.
Awesome Pretrained StyleGAN2 A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution. Note the readme is a
RuCLIP tiny (Russian Contrastive Language–Image Pretraining) is a neural network trained to work with different pairs (images, texts).
RuCLIPtiny Zero-shot image classification model for Russian language RuCLIP tiny (Russian Contrastive Language–Image Pretraining) is a neural network
Nerdle - a nerd's approach to solving Wordle
Nerdle - a nerd's approach to solving Wordle
This is an early in-development version of training CLIP models with hivemind.
A transformer that does not hog your GPU memory This is an early in-development codebase: if you want a stable and documented hivemind codebase, look
This repo contains a simple but effective tool made using python which can be used for quality control in statistical approach.
This repo contains a powerful tool made using python which is used to visualize, analyse and finally assess the quality of the product depending upon the given observations
RuCLIP-SB (Russian Contrastive Language–Image Pretraining SWIN-BERT) is a multimodal model for obtaining images and text similarities and rearranging captions and pictures. Unlike other versions of the model we use BERT for text encoder and SWIN transformer for image encoder.
ruCLIP-SB RuCLIP-SB (Russian Contrastive Language–Image Pretraining SWIN-BERT) is a multimodal model for obtaining images and text similarities and re
smc.covid is an R package related to the paper A sequential Monte Carlo approach to estimate a time varying reproduction number in infectious disease models: the COVID-19 case by Storvik et al
smc.covid smc.covid is an R package related to the paper A sequential Monte Carlo approach to estimate a time varying reproduction number in infectiou
An Approach to Explore Logistic Regression Models
User-centered Regression An Approach to Explore Logistic Regression Models This tool applies the potential of Attribute-RadViz in identifying correlat
Which Style Makes Me Attractive? Interpretable Control Discovery and Counterfactual Explanation on StyleGAN
Interpretable Control Exploration and Counterfactual Explanation (ICE) on StyleGAN Which Style Makes Me Attractive? Interpretable Control Discovery an
Clustering is a popular approach to detect patterns in unlabeled data
Visual Clustering Clustering is a popular approach to detect patterns in unlabeled data. Existing clustering methods typically treat samples in a data
STEM: An approach to Multi-source Domain Adaptation with Guarantees
STEM: An approach to Multi-source Domain Adaptation with Guarantees Introduction This is the official implementation of ``STEM: An approach to Multi-s
CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pairs
CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair
ThorFI: A Novel Approach for Network Fault Injection as a Service
ThorFI: a Novel Approach for Network Fault Injection as a Service This repo includes ThorFI, a novel fault injection solution for virtual networks in
Applying CLIP to Point Cloud Recognition.
PointCLIP: Point Cloud Understanding by CLIP This repository is an official implementation of the paper 'PointCLIP: Point Cloud Understanding by CLIP'
A novel dual model approach for categorization of unbalanced skin lesion image classes (Presented technical paper 📃)
A novel dual model approach for categorization of unbalanced skin lesion image classes (Presented technical paper 📃)
The trained model and denoising example for paper : Cardiopulmonary Auscultation Enhancement with a Two-Stage Noise Cancellation Approach
The trained model and denoising example for paper : Cardiopulmonary Auscultation Enhancement with a Two-Stage Noise Cancellation Approach
TiP-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling
TiP-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling This is the official code release for the paper 'TiP-Adapter: Training-fre
The aim of the game, as in the original one, is to find a specific image from a group of different images of a person's face
GUESS WHO Main Links: [Github] [App] Related Links: [CLIP] [Celeba] The aim of the game, as in the original one, is to find a specific image from a gr
Official Code Release for "CLIP-Adapter: Better Vision-Language Models with Feature Adapters"
Official Code Release for "CLIP-Adapter: Better Vision-Language Models with Feature Adapters" Pipeline of CLIP-Adapter CLIP-Adapter is a drop-in modul
This is the official repository of Music Playlist Title Generation: A Machine-Translation Approach.
PlyTitle_Generation This is the official repository of Music Playlist Title Generation: A Machine-Translation Approach. The paper has been accepted by
Neural Cellular Automata + CLIP
🧠 Text-2-Cellular Automata Using Neural Cellular Automata + OpenAI CLIP (Work in progress) Examples Text Prompt: Cthulu is watching cthulu_is_watchin
Using OpenAI's CLIP to upscale and enhance images
CLIP Upscaler and Enhancer Using OpenAI's CLIP to upscale and enhance images Based on nshepperd's JAX CLIP Guided Diffusion v2.4 Sample Results Viewpo
CLIP2Video: Mastering Video-Text Retrieval via Image CLIP
CLIP2Video: Mastering Video-Text Retrieval via Image CLIP The implementation of paper CLIP2Video: Mastering Video-Text Retrieval via Image CLIP. CLIP2
Use CLIP to represent video for Retrieval Task
A Straightforward Framework For Video Retrieval Using CLIP This repository contains the basic code for feature extraction and replication of results.
Learning to Identify Top Elo Ratings with A Dueling Bandits Approach
Learning to Identify Top Elo Ratings We propose two algorithms MaxIn-Elo and MaxIn-mElo to solve the top players identification on the transitive and
Fully Adaptive Bayesian Algorithm for Data Analysis (FABADA) is a new approach of noise reduction methods. In this repository is shown the package developed for this new method based on \citepaper.
Fully Adaptive Bayesian Algorithm for Data Analysis FABADA FABADA is a novel non-parametric noise reduction technique which arise from the point of vi
Performance Analysis of Multi-user NOMA Wireless-Powered mMTC Networks: A Stochastic Geometry Approach
Performance Analysis of Multi-user NOMA Wireless-Powered mMTC Networks: A Stochastic Geometry Approach Thanh Luan Nguyen, Tri Nhu Do, Georges Kaddoum
A Small and Easy approach to the BraTS2020 dataset (2D Segmentation)
BraTS2020 A Light & Scalable Solution to BraTS2020 | Medical Brain Tumor Segmentation (2D Segmentation) Developed the segmentation models for segregat
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.
Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which
Reproducing Results from A Hybrid Approach to Targeting Social Assistance
title author date output Reproducing Results from A Hybrid Approach to Targeting Social Assistance Lendie Follett and Heath Henderson 12/28/2021 html_
Script and models for clustering LAION-400m CLIP embeddings.
clustering-laion400m Script and models for clustering LAION-400m CLIP embeddings. Models were fit on the first million or so image embeddings. A subje
Python package for Near Duplicate Video Detection (Perceptual Video Hashing) - Get a 64-bit comparable hash-value for any video.
The Python package for near duplicate video detection ⭐️ Introduction Videohash is a Python package for detecting near-duplicate videos (Perceptual Vi
RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP
[Paper] [Хабр] [Model Card] [Colab] [Kaggle] RuDOLPH 🦌 🎄 ☃️ One Hyper-Modal Tr
The VarCNN is an Convolution Neural Network based approach to automate Video Assistant Referee in football.
VarCnn: The Deep Learning Powered VAR
PASSL包含 SimCLR,MoCo,BYOL,CLIP等基于对比学习的图像自监督算法以及 Vision-Transformer,Swin-Transformer,BEiT,CVT,T2T,MLP_Mixer等视觉Transformer算法
PASSL Introduction PASSL is a Paddle based vision library for state-of-the-art Self-Supervised Learning research with PaddlePaddle. PASSL aims to acce
LRBoost is a scikit-learn compatible approach to performing linear residual based stacking/boosting.
LRBoost is a sckit-learn compatible package for linear residual boosting. LRBoost combines a linear estimator and a non-linear estimator to leverage t
It is a simple library to speed up CLIP inference up to 3x (K80 GPU)
CLIP-ONNX It is a simple library to speed up CLIP inference up to 3x (K80 GPU) Usage Install clip-onnx module and requirements first. Use this trick !
To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.
To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.
PCACE: A Statistical Approach to Ranking Neurons for CNN Interpretability
PCACE: A Statistical Approach to Ranking Neurons for CNN Interpretability PCACE is a new algorithm for ranking neurons in a CNN architecture in order
Code for the paper: Fusformer: A Transformer-based Fusion Approach for Hyperspectral Image Super-resolution
Fusformer Code for the paper: "Fusformer: A Transformer-based Fusion Approach for Hyperspectral Image Super-resolution" Plateform Python 3.8.5 + Pytor
UI2I via StyleGAN2 - Unsupervised image-to-image translation method via pre-trained StyleGAN2 network
We proposed an unsupervised image-to-image translation method via pre-trained StyleGAN2 network. paper: Unsupervised Image-to-Image Translation via Pr
Python implementation of ZMP Preview Control approach for biped robot control.
ZMP Preview Control This is the Python implementation of ZMP Preview Control app
Augmented CLIP - Training simple models to predict CLIP image embeddings from text embeddings, and vice versa.
Train aug_clip against laion400m-embeddings found here: https://laion.ai/laion-400-open-dataset/ - note that this used the base ViT-B/32 CLIP model. S
StyleGAN2-ADA-training-jupyter - Training custom datasets in styleGAN2-ADA by NVIDIA using Jupyter
styleGAN2-ADA-training-jupyter Training custom datasets in styleGAN2-ADA on Jupyter Official StyleGAN2-ADA by NIVIDIA Paper Training Generative Advers
OpenAI CLIP text encoders for multiple languages!
Multilingual-CLIP OpenAI CLIP text encoders for any language Colab Notebook · Pre-trained Models · Report Bug Overview OpenAI recently released the pa
Traditional deepdream with VQGAN+CLIP and optical flow. Ready to use in Google Colab
VQGAN-CLIP-Video cat.mp4 policeman.mp4 schoolboy.mp4 forsenBOG.mp4
AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation
AtlasNet [Project Page] [Paper] [Talk] AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation Thibault Groueix, Matthew Fisher, Vladimir
[ICCV 2021] Our work presents a novel neural rendering approach that can efficiently reconstruct geometric and neural radiance fields for view synthesis.
MVSNeRF Project page | Paper This repository contains a pytorch lightning implementation for the ICCV 2021 paper: MVSNeRF: Fast Generalizable Radiance
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Trevor Ablett*, Bryan Chan*,
Working demo of the Multi-class and Anomaly classification model using the CLIP feature space
👁️ Hindsight AI: Crime Classification With Clip About For Educational Purposes Only This is a recursive neural net trained to classify specific crime
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code
D2LV: A Data-Driven and Local-Verification Approach for Image Copy Detection
Facebook AI Image Similarity Challenge: Matching Track —— Team: imgFp This is the source code of our 3rd place solution to matching track of Image Sim
A Vision Transformer approach that uses concatenated query and reference images to learn the relationship between query and reference images directly.
A Vision Transformer approach that uses concatenated query and reference images to learn the relationship between query and reference images directly.
This is Unofficial Repo. Lips Don't Lie: A Generalisable and Robust Approach to Face Forgery Detection (CVPR 2021)
Lips Don't Lie: A Generalisable and Robust Approach to Face Forgery Detection This is a PyTorch implementation of the LipForensics paper. This is an U
A concise but complete implementation of CLIP with various experimental improvements from recent papers
x-clip (wip) A concise but complete implementation of CLIP with various experimental improvements from recent papers Install $ pip install x-clip Usag
A concise but complete implementation of CLIP with various experimental improvements from recent papers
x-clip (wip) A concise but complete implementation of CLIP with various experimental improvements from recent papers Install $ pip install x-clip Usag
A simple library that implements CLIP guided loss in PyTorch.
pytorch_clip_guided_loss: Pytorch implementation of the CLIP guided loss for Text-To-Image, Image-To-Image, or Image-To-Text generation. A simple libr
FuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space OptimizationFuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space Optimization
FuseDream This repo contains code for our paper (paper link): FuseDream: Training-Free Text-to-Image Generation with Improved CLIP+GAN Space Optimizat
Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition"
CLIPstyler Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition" Environment Pytorch 1.7.1, Python 3.6 $ c
CLIP (Contrastive Language–Image Pre-training) trained on Indonesian data
CLIP-Indonesian CLIP (Radford et al., 2021) is a multimodal model that can connect images and text by training a vision encoder and a text encoder joi
Contrastive Language-Image Pretraining
CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair
TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation
TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation Zhaoyun Yin, Pichao Wang, Fan Wang, Xianzhe Xu, Hanling Zhang, Hao Li
Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition"
CLIPstyler Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition" Environment Pytorch 1.7.1, Python 3.6 $ c
TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation
TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation Zhaoyun Yin, Pichao Wang, Fan Wang, Xianzhe Xu, Hanling Zhang, Hao Li
PyTorch source code of NAACL 2019 paper "An Embarrassingly Simple Approach for Transfer Learning from Pretrained Language Models"
This repository contains source code for NAACL 2019 paper "An Embarrassingly Simple Approach for Transfer Learning from Pretrained Language Models" (P
code for our ECCV 2020 paper "A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation"
Code for our ECCV (2020) paper A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation. Prerequisites: python == 3.6.8 pytorch ==1.1.0