84 Repositories
Python symbolic-computation Libraries
(Personalized) Page-Rank computation using PyTorch
torch-ppr This package allows calculating page-rank and personalized page-rank via power iteration with PyTorch, which also supports calculation on GP
A symbolic-model-guided fuzzer for TLS
tlspuffin TLS Protocol Under FuzzINg A symbolic-model-guided fuzzer for TLS Master Thesis | Thesis Presentation | Documentation Disclaimer: The term "
Fast SHAP value computation for interpreting tree-based models
FastTreeSHAP FastTreeSHAP package is built based on the paper Fast TreeSHAP: Accelerating SHAP Value Computation for Trees published in NeurIPS 2021 X
A pure PyTorch batched computation implementation of "CIF: Continuous Integrate-and-Fire for End-to-End Speech Recognition"
A pure PyTorch batched computation implementation of "CIF: Continuous Integrate-and-Fire for End-to-End Speech Recognition"
CATE: Computation-aware Neural Architecture Encoding with Transformers
CATE: Computation-aware Neural Architecture Encoding with Transformers Code for paper: CATE: Computation-aware Neural Architecture Encoding with Trans
FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control
FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control by Dimitri von Rütte, Luca Biggio, Yannic Kilcher, Thomas Hofmann FIGARO: Generat
Adaptable tools to make reinforcement learning and evolutionary computation algorithms.
Pearl The Parallel Evolutionary and Reinforcement Learning Library (Pearl) is a pytorch based package with the goal of being excellent for rapid proto
Official implementation for "Symbolic Learning to Optimize: Towards Interpretability and Scalability"
Symbolic Learning to Optimize This is the official implementation for ICLR-2022 paper "Symbolic Learning to Optimize: Towards Interpretability and Sca
This implementation contains the application of GPlearn's symbolic transformer on a commodity futures sector of the financial market.
GPlearn_finiance_stock_futures_extension This implementation contains the application of GPlearn's symbolic transformer on a commodity futures sector
Bayesian Modeling and Computation in Python
Bayesian Modeling and Computation in Python Open access and Code This repository contains the open access version of the text and the code examples in
Semantic similarity computation with different state-of-the-art metrics
Semantic similarity computation with different state-of-the-art metrics Description • Installation • Usage • License Description TaxoSS is a semantic
An analysis tool for Python that blurs the line between testing and type systems.
CrossHair An analysis tool for Python that blurs the line between testing and type systems. THE LATEST NEWS: Check out the new crosshair cover command
Audio-to-symbolic Arrangement via Cross-modal Music Representation Learning
Automatic Audio-to-symbolic Arrangement This is the repository of the project "Audio-to-symbolic Arrangement via Cross-modal Music Representation Lear
Audio2midi - Automatic Audio-to-symbolic Arrangement
Automatic Audio-to-symbolic Arrangement This is the repository of the project "A
Numerical-computing-is-fun - Learning numerical computing with notebooks for all ages.
As much as this series is to educate aspiring computer programmers and data scientists of all ages and all backgrounds, it is also a reminder to mysel
Relaxed-machines - explorations in neuro-symbolic differentiable interpreters
Relaxed Machines Explorations in neuro-symbolic differentiable interpreters. Baby steps: inc_stop Libraries JAX Haiku Optax Resources Chapter 3 (∂4: A
Aesara is a Python library that allows one to define, optimize, and efficiently evaluate mathematical expressions involving multi-dimensional arrays.
Aesara is a Python library that allows one to define, optimize, and efficiently evaluate mathematical expressions involving multi-dimensional arrays.
Memory efficient transducer loss computation
Introduction This project implements the optimization techniques proposed in Improving RNN Transducer Modeling for End-to-End Speech Recognition to re
MixText: Linguistically-Informed Interpolation of Hidden Space for Semi-Supervised Text Classification
MixText This repo contains codes for the following paper: Jiaao Chen, Zichao Yang, Diyi Yang: MixText: Linguistically-Informed Interpolation of Hidden
Antchain-MPC is a library of MPC (Multi-Parties Computation)
Antchain-MPC Antchain-MPC is a library of MPC (Multi-Parties Computation). It include Morse-STF: A tool for machine learning using MPC. Others: Commin
SymPy-powered, Wolfram|Alpha-like answer engine totally in your browser, without backend computation
SymPy Beta SymPy Beta is a fork of SymPy Gamma. The purpose of this project is to run a SymPy-powered, Wolfram|Alpha-like answer engine totally in you
A set of tests for evaluating large-scale algorithms for Wasserstein-2 transport maps computation.
Continuous Wasserstein-2 Benchmark This is the official Python implementation of the NeurIPS 2021 paper Do Neural Optimal Transport Solvers Work? A Co
A library for pattern matching on symbolic expressions in Python.
MatchPy is a library for pattern matching on symbolic expressions in Python. Work in progress Installation MatchPy is available via PyPI, and
Python wrappers to the C++ library SymEngine, a fast C++ symbolic manipulation library.
SymEngine Python Wrappers Python wrappers to the C++ library SymEngine, a fast C++ symbolic manipulation library. Installation Pip See License section
A `Neural = Symbolic` framework for sound and complete weighted real-value logic
Logical Neural Networks LNNs are a novel Neuro = symbolic framework designed to seamlessly provide key properties of both neural nets (learning) and s
A Framework for Encrypted Machine Learning in TensorFlow
TF Encrypted is a framework for encrypted machine learning in TensorFlow. It looks and feels like TensorFlow, taking advantage of the ease-of-use of t
Symbolic Music Generation with Diffusion Models
Symbolic Music Generation with Diffusion Models Supplementary code release for our work Symbolic Music Generation with Diffusion Models. Installation
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation
Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation
Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici
Official code repository for the publication "Latent Equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons"
Latent Equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons This repository contains the code to repr
PyTorch implementation for the Neuro-Symbolic Sudoku Solver leveraging the power of Neural Logic Machines (NLM)
Neuro-Symbolic Sudoku Solver PyTorch implementation for the Neuro-Symbolic Sudoku Solver leveraging the power of Neural Logic Machines (NLM). Please n
tmm_fast is a lightweight package to speed up optical planar multilayer thin-film device computation.
tmm_fast tmm_fast or transfer-matrix-method_fast is a lightweight package to speed up optical planar multilayer thin-film device computation. It is es
Mars is a tensor-based unified framework for large-scale data computation which scales numpy, pandas, scikit-learn and Python functions.
Mars is a tensor-based unified framework for large-scale data computation which scales numpy, pandas, scikit-learn and many other libraries. Documenta
A simple script written using symbolic python that takes as input a desired metric and automatically calculates and outputs the Christoffel Pseudo-Tensor, Riemann Curvature Tensor, Ricci Tensor, Scalar Curvature and the Kretschmann Scalar
A simple script written using symbolic python that takes as input a desired metric and automatically calculates and outputs the Christoffel Pseudo-Tensor, Riemann Curvature Tensor, Ricci Tensor, Scalar Curvature and the Kretschmann Scalar
Epidemiology analysis package
zEpid zEpid is an epidemiology analysis package, providing easy to use tools for epidemiologists coding in Python 3.5+. The purpose of this library is
PyTorch implementation of the paper:A Convolutional Approach to Melody Line Identification in Symbolic Scores.
Symbolic Melody Identification This repository is an unofficial PyTorch implementation of the paper:A Convolutional Approach to Melody Line Identifica
Taichi is a parallel programming language for high-performance numerical computations.
Taichi is a parallel programming language for high-performance numerical computations.
The code of NeurIPS 2021 paper "Scalable Rule-Based Representation Learning for Interpretable Classification".
Rule-based Representation Learner This is a PyTorch implementation of Rule-based Representation Learner (RRL) as described in NeurIPS 2021 paper: Scal
Hummingbird compiles trained ML models into tensor computation for faster inference.
Hummingbird Introduction Hummingbird is a library for compiling trained traditional ML models into tensor computations. Hummingbird allows users to se
A non-linear, non-parametric Machine Learning method capable of modeling complex datasets
Fast Symbolic Regression Symbolic Regression is a non-linear, non-parametric Machine Learning method capable of modeling complex data sets. fastsr aim
Geometric Algebra package for JAX
JAXGA - JAX Geometric Algebra GitHub | Docs JAXGA is a Geometric Algebra package on top of JAX. It can handle high dimensional algebras by storing onl
Source code for deep symbolic optimization.
Update July 10, 2021: This repository now supports an additional symbolic optimization task: learning symbolic policies for reinforcement learning. Th
Unofficial implementation of the paper: PonderNet: Learning to Ponder in TensorFlow
PonderNet-TensorFlow This is an Unofficial Implementation of the paper: PonderNet: Learning to Ponder in TensorFlow. Official PyTorch Implementation:
[NeurIPS 2021] "Delayed Propagation Transformer: A Universal Computation Engine towards Practical Control in Cyber-Physical Systems"
Delayed Propagation Transformer: A Universal Computation Engine towards Practical Control in Cyber-Physical Systems Introduction Multi-agent control i
A new mini-batch framework for optimal transport in deep generative models, deep domain adaptation, approximate Bayesian computation, color transfer, and gradient flow.
BoMb-OT Python3 implementation of the papers On Transportation of Mini-batches: A Hierarchical Approach and Improving Mini-batch Optimal Transport via
A bare-bones Python library for quality diversity optimization.
pyribs Website Source PyPI Conda CI/CD Docs Docs Status Twitter pyribs.org GitHub docs.pyribs.org A bare-bones Python library for quality diversity op
Implementation of the paper "Generating Symbolic Reasoning Problems with Transformer GANs"
Generating Symbolic Reasoning Problems with Transformer GANs This is the implementation of the paper Generating Symbolic Reasoning Problems with Trans
Driller: augmenting AFL with symbolic execution!
Driller Driller is an implementation of the driller paper. This implementation was built on top of AFL with angr being used as a symbolic tracer. Dril
Angora is a mutation-based fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without symbolic execution.
Angora Angora is a mutation-based coverage guided fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without s
Scientific Computation Methods in C and Python (Open for Hacktoberfest 2021)
Sci - cpy README is a stub. Do expand it. Objective This repository is meant to be a ready reference for scientific computation methods. Do ⭐ it if yo
Sample and Computation Redistribution for Efficient Face Detection
Introduction SCRFD is an efficient high accuracy face detection approach which initially described in Arxiv. Performance Precision, flops and infer ti
PyBullet CartPole and Quadrotor environments—with CasADi symbolic a priori dynamics—for learning-based control and reinforcement learning
safe-control-gym Physics-based CartPole and Quadrotor Gym environments (using PyBullet) with symbolic a priori dynamics (using CasADi) for learning-ba
Implementation of a Transformer that Ponders, using the scheme from the PonderNet paper
Ponder(ing) Transformer Implementation of a Transformer that learns to adapt the number of computational steps it takes depending on the difficulty of
Implementation of a Transformer that Ponders, using the scheme from the PonderNet paper
Ponder(ing) Transformer Implementation of a Transformer that learns to adapt the number of computational steps it takes depending on the difficulty of
Sum-Product Probabilistic Language
Sum-Product Probabilistic Language SPPL is a probabilistic programming language that delivers exact solutions to a broad range of probabilistic infere
Data and Code for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning"
Introduction Code and data for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning". We cons
Source code and Dataset creation for the paper "Neural Symbolic Regression That Scales"
NeuralSymbolicRegressionThatScales Pytorch implementation and pretrained models for the paper "Neural Symbolic Regression That Scales", presented at I
A PyTorch implementation of "SimGNN: A Neural Network Approach to Fast Graph Similarity Computation" (WSDM 2019).
SimGNN ⠀⠀⠀ A PyTorch implementation of SimGNN: A Neural Network Approach to Fast Graph Similarity Computation (WSDM 2019). Abstract Graph similarity s
Official repository for the paper, MidiBERT-Piano: Large-scale Pre-training for Symbolic Music Understanding.
MidiBERT-Piano Authors: Yi-Hui (Sophia) Chou, I-Chun (Bronwin) Chen Introduction This is the official repository for the paper, MidiBERT-Piano: Large-
Lyapunov-guided Deep Reinforcement Learning for Stable Online Computation Offloading in Mobile-Edge Computing Networks
PyTorch code to reproduce LyDROO algorithm [1], which is an online computation offloading algorithm to maximize the network data processing capability subject to the long-term data queue stability and average power constraints. It applies Lyapunov optimization to decouple the multi-stage stochastic MINLP into deterministic per-frame MINLP subproblems and solves each subproblem via DROO algorithm. It includes:
The AugNet Python module contains functions for the fast computation of image similarity.
AugNet AugNet: End-to-End Unsupervised Visual Representation Learning with Image Augmentation arxiv link In our work, we propose AugNet, a new deep le
Custom TensorFlow2 implementations of forward and backward computation of soft-DTW algorithm in batch mode.
Batch Soft-DTW(Dynamic Time Warping) in TensorFlow2 including forward and backward computation Custom TensorFlow2 implementations of forward and backw
Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis in JAX
SYMPAIS: Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis Overview | Installation | Documentation | Examples | Notebo
PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021]
piglet PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021] This repo contains code and data for PIGLeT. If you like
pytorch-kaldi is a project for developing state-of-the-art DNN/RNN hybrid speech recognition systems. The DNN part is managed by pytorch, while feature extraction, label computation, and decoding are performed with the kaldi toolkit.
The PyTorch-Kaldi Speech Recognition Toolkit PyTorch-Kaldi is an open-source repository for developing state-of-the-art DNN/HMM speech recognition sys
ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs
(Comet-) ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs Paper Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras, Jeff Da, Keisuke Sa
Simple, fast, and parallelized symbolic regression in Python/Julia via regularized evolution and simulated annealing
Parallelized symbolic regression built on Julia, and interfaced by Python. Uses regularized evolution, simulated annealing, and gradient-free optimization.
Describing statistical models in Python using symbolic formulas
Patsy is a Python library for describing statistical models (especially linear models, or models that have a linear component) and building design mat
Functional tensors for probabilistic programming
Funsor Funsor is a tensor-like library for functions and distributions. See Functional tensors for probabilistic programming for a system description.
Official codebase for Pretrained Transformers as Universal Computation Engines.
universal-computation Overview Official codebase for Pretrained Transformers as Universal Computation Engines. Contains demo notebook and scripts to r
Genetic Programming in Python, with a scikit-learn inspired API
Welcome to gplearn! gplearn implements Genetic Programming in Python, with a scikit-learn inspired and compatible API. While Genetic Programming (GP)
Deep learning with dynamic computation graphs in TensorFlow
TensorFlow Fold TensorFlow Fold is a library for creating TensorFlow models that consume structured data, where the structure of the computation graph
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.
Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree
Fast and Easy Infinite Neural Networks in Python
Neural Tangents ICLR 2020 Video | Paper | Quickstart | Install guide | Reference docs | Release notes Overview Neural Tangents is a high-level neural
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.
Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.
============================================================================================================ `MILA will stop developing Theano https:
An open framework for Federated Learning.
Welcome to Intel® Open Federated Learning Federated learning is a distributed machine learning approach that enables organizations to collaborate on m
The Levenshtein Python C extension module contains functions for fast computation of Levenshtein distance and string similarity
Contents Maintainer wanted Introduction Installation Documentation License History Source code Authors Maintainer wanted I am looking for a new mainta
Levenshtein and Hamming distance computation
distance - Utilities for comparing sequences This package provides helpers for computing similarities between arbitrary sequences. Included metrics ar
A library for answering questions using data you cannot see
A library for computing on data you do not own and cannot see PySyft is a Python library for secure and private Deep Learning. PySyft decouples privat
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.
Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.
============================================================================================================ `MILA will stop developing Theano https:
aka "Bayesian Methods for Hackers": An introduction to Bayesian methods + probabilistic programming with a computation/understanding-first, mathematics-second point of view. All in pure Python ;)
Bayesian Methods for Hackers Using Python and PyMC The Bayesian method is the natural approach to inference, yet it is hidden from readers behind chap
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.
============================================================================================================ `MILA will stop developing Theano https: