87 Repositories
Python systematic-generalization Libraries
[Arxiv preprint] Causality-inspired Single-source Domain Generalization for Medical Image Segmentation (code&data-processing pipeline)
Causality-inspired Single-source Domain Generalization for Medical Image Segmentation Arxiv preprint Repository under construction. Might still be bug
Code of paper: "DropAttack: A Masked Weight Adversarial Training Method to Improve Generalization of Neural Networks"
DropAttack: A Masked Weight Adversarial Training Method to Improve Generalization of Neural Networks Abstract: Adversarial training has been proven to
codebase for "A Theory of the Inductive Bias and Generalization of Kernel Regression and Wide Neural Networks"
Eigenlearning This repo contains code for replicating the experiments of the paper A Theory of the Inductive Bias and Generalization of Kernel Regress
[CVPR 2022] Pytorch implementation of "Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions" paper
template-pose Pytorch implementation of "Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions
SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers
SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers This repo contains our codes for the paper "No Parameters Left Behind: Sensitivity Gu
Adaout is a practical and flexible regularization method with high generalization and interpretability
Adaout Adaout is a practical and flexible regularization method with high generalization and interpretability. Requirements python 3.6 (Anaconda versi
PyTorch implementation of our paper How robust are discriminatively trained zero-shot learning models?
How robust are discriminatively trained zero-shot learning models? This repository contains the PyTorch implementation of our paper How robust are dis
What can linearized neural networks actually say about generalization?
What can linearized neural networks actually say about generalization? This is the source code to reproduce the experiments of the NeurIPS 2021 paper
Neural Tangent Generalization Attacks (NTGA)
Neural Tangent Generalization Attacks (NTGA) ICML 2021 Video | Paper | Quickstart | Results | Unlearnable Datasets | Competitions | Citation Overview
Image Classification - A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches
A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches
Quant & Systematic Crypto Research Tools
qsec Quant & Systematic Crypto Research Tools --WORK IN PROGRESS-- This repo is a collection of research tools to help in exploring and building sys
Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization
Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization Code for reproducing our results in the Head2Toe paper. Paper: arxiv.or
Code accompanying the paper on "An Empirical Investigation of Domain Generalization with Empirical Risk Minimizers" published at NeurIPS, 2021
Code for "An Empirical Investigation of Domian Generalization with Empirical Risk Minimizers" (NeurIPS 2021) Motivation and Introduction Domain Genera
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.
Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which
Demonstration of transfer of knowledge and generalization with distillation
Distilling-the-Knowledge-in-a-Neural-Network This is an implementation of a part of the paper "Distilling the Knowledge in a Neural Network" (https://
Train Scene Graph Generation for Visual Genome and GQA in PyTorch = 1.2 with improved zero and few-shot generalization.
Scene Graph Generation Object Detections Ground truth Scene Graph Generated Scene Graph In this visualization, woman sitting on rock is a zero-shot tr
CSAC - Collaborative Semantic Aggregation and Calibration for Separated Domain Generalization
CSAC Introduction This repository contains the implementation code for paper: Co
Self-supervised learning optimally robust representations for domain generalization.
OptDom: Learning Optimal Representations for Domain Generalization This repository contains the official implementation for Optimal Representations fo
Reproduce results and replicate training fo T0 (Multitask Prompted Training Enables Zero-Shot Task Generalization)
T-Zero This repository serves primarily as codebase and instructions for training, evaluation and inference of T0. T0 is the model developed in Multit
An Official Repo of CVPR '20 "MSeg: A Composite Dataset for Multi-Domain Segmentation"
This is the code for the paper: MSeg: A Composite Dataset for Multi-domain Semantic Segmentation (CVPR 2020, Official Repo) [CVPR PDF] [Journal PDF] J
Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation
OoD_Gen-Chest_Xray Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation Requirements (Installations) Install the following libra
Implementation for "Domain-Specific Bias Filtering for Single Labeled Domain Generalization"
DSBF Introduction This repository contains the implementation code for paper: Domain-Specific Bias Filtering for Single Labeled Domain Generalization
A New Open-Source Off-road Environment for Benchmark Generalization of Autonomous Driving
A New Open-Source Off-road Environment for Benchmark Generalization of Autonomous Driving Isaac Han, Dong-Hyeok Park, and Kyung-Joong Kim IEEE Access
Benchmark for the generalization of 3D machine learning models across different remeshing/samplings of a surface.
Discretization Robust Correspondence Benchmark One challenge of machine learning on 3D surfaces is that there are many different representations/sampl
Code accompanying "Adaptive Methods for Aggregated Domain Generalization"
Adaptive Methods for Aggregated Domain Generalization (AdaClust) Official Pytorch Implementation of Adaptive Methods for Aggregated Domain Generalizat
The repo for reproducing Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study
ECIR Reproducibility Paper: Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study This code corresponds to the reproducibility
PyTorch implementation of Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets
Simple PyTorch Implementation of "Grokking" Implementation of Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets Usage Running
PyTorch implementation of Decoupling Value and Policy for Generalization in Reinforcement Learning
PyTorch implementation of Decoupling Value and Policy for Generalization in Reinforcement Learning
Re-implementation of 'Grokking: Generalization beyond overfitting on small algorithmic datasets'
Re-implementation of the paper 'Grokking: Generalization beyond overfitting on small algorithmic datasets' Paper Original paper can be found here Data
OOD Generalization and Detection (ACL 2020)
Pretrained Transformers Improve Out-of-Distribution Robustness How does pretraining affect out-of-distribution robustness? We create an OOD benchmark
EMNLP 2021 paper The Devil is in the Detail: Simple Tricks Improve Systematic Generalization of Transformers.
Codebase for training transformers on systematic generalization datasets. The official repository for our EMNLP 2021 paper The Devil is in the Detail:
Super Tickets in Pre-Trained Language Models: From Model Compression to Improving Generalization (ACL 2021)
Structured Super Lottery Tickets in BERT This repo contains our codes for the paper "Super Tickets in Pre-Trained Language Models: From Model Compress
Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting
QAConv Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting This PyTorch code is proposed in
A Benchmark For Measuring Systematic Generalization of Multi-Hierarchical Reasoning
Orchard Dataset This repository contains the code used for generating the Orchard Dataset, as seen in the Multi-Hierarchical Reasoning in Sequences: S
Official implementation of "Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks", NeurIPS 2021.
PHDimGeneralization Official implementation of "Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks", NeurIPS 2021. Overvie
Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model
Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model
A new test set for ImageNet
ImageNetV2 The ImageNetV2 dataset contains new test data for the ImageNet benchmark. This repository provides associated code for assembling and worki
Domain Generalization for Mammography Detection via Multi-style and Multi-view Contrastive Learning
MSVCL_MICCAI2021 Installation Please follow the instruction in pytorch-CycleGAN-and-pix2pix to install. Example Usage An example of vendor-styles tran
PyTorch Code for "Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning"
Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning [Project Page] [Paper] Wenlong Huang1, Igor Mordatch2, Pieter Abbeel1,
Understanding the Generalization Benefit of Model Invariance from a Data Perspective
Understanding the Generalization Benefit of Model Invariance from a Data Perspective This is the code for our NeurIPS2021 paper "Understanding the Gen
Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods
Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods Introduction Graph Neural Networks (GNNs) have demonstrated
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.
Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which
[ICML'21] Estimate the accuracy of the classifier in various environments through self-supervision
What Does Rotation Prediction Tell Us about Classifier Accuracy under Varying Testing Environments? [Paper] [ICML'21 Project] PyTorch Implementation T
Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods
Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods Introduction Graph Neural Networks (GNNs) have demonstrated
Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion
Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion Preface This directory provides an implementation of the algori
Implementation for paper "Towards the Generalization of Contrastive Self-Supervised Learning"
Contrastive Self-Supervised Learning on CIFAR-10 Paper "Towards the Generalization of Contrastive Self-Supervised Learning", Weiran Huang, Mingyang Yi
Implementation of average- and worst-case robust flatness measures for adversarial training.
Relating Adversarially Robust Generalization to Flat Minima This repository contains code corresponding to the MLSys'21 paper: D. Stutz, M. Hein, B. S
This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset.
FACT This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset. To cite, please use:
This is the official implementation for the paper "Heterogeneous Multi-player Multi-armed Bandits: Closing the Gap and Generalization" in NeurIPS 2021.
MPMAB_BEACON This is code used for the paper "Decentralized Multi-player Multi-armed Bandits: Beyond Linear Reward Functions", Neurips 2021. Requireme
An execution framework for systematic strategies
WAGMI is an execution framework for systematic strategies. It is very much a work in progress, please don't expect it to work! Architecture The Django
This codebase is the official implementation of Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization (NeurIPS2021, Spotlight)
Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization This codebase is the official implementation of Test-Time Classifier A
In Search of Probeable Generalization Measures
In Search of Probeable Generalization Measures Exciting News! In Search of Probeable Generalization Measures has been accepted to the International Co
PyTorch code of my WACV 2022 paper Improving Model Generalization by Agreement of Learned Representations from Data Augmentation
Improving Model Generalization by Agreement of Learned Representations from Data Augmentation (WACV 2022) Paper ArXiv Why it matters? When data augmen
Repository for the NeurIPS 2021 paper: "Exploiting Domain-Specific Features to Enhance Domain Generalization".
meta-Domain Specific-Domain Invariant (mDSDI) Source code implementation for the paper: Manh-Ha Bui, Toan Tran, Anh Tuan Tran, Dinh Phung. "Exploiting
This repo includes our code for evaluating and improving transferability in domain generalization (NeurIPS 2021)
Transferability for domain generalization This repo is for evaluating and improving transferability in domain generalization (NeurIPS 2021), based on
The official repository for our paper "The Neural Data Router: Adaptive Control Flow in Transformers Improves Systematic Generalization".
Codebase for learning control flow in transformers The official repository for our paper "The Neural Data Router: Adaptive Control Flow in Transformer
The OHSDI OMOP Common Data Model allows for the systematic analysis of healthcare observational databases.
The OHSDI OMOP Common Data Model allows for the systematic analysis of healthcare observational databases.
ImageNet-CoG is a benchmark for concept generalization. It provides a full evaluation framework for pre-trained visual representations which measure how well they generalize to unseen concepts.
The ImageNet-CoG Benchmark Project Website Paper (arXiv) Code repository for the ImageNet-CoG Benchmark introduced in the paper "Concept Generalizatio
Instance-based label smoothing for improving deep neural networks generalization and calibration
Instance-based Label Smoothing for Neural Networks Pytorch Implementation of the algorithm. This repository includes a new proposed method for instanc
Simple (but Strong) Baselines for POMDPs
Recurrent Model-Free RL is a Strong Baseline for Many POMDPs Welcome to the POMDP world! This repo provides some simple baselines for POMDPs, specific
Toolkit for building machine learning models that generalize to unseen domains and are robust to privacy and other attacks.
Toolkit for Building Robust ML models that generalize to unseen domains (RobustDG) Divyat Mahajan, Shruti Tople, Amit Sharma Privacy & Causal Learning
The official repository for paper ''Domain Generalization for Vision-based Driving Trajectory Generation'' submitted to ICRA 2022
DG-TrajGen The official repository for paper ''Domain Generalization for Vision-based Driving Trajectory Generation'' submitted to ICRA 2022. Our Meth
Multiple paper open-source codes of the Microsoft Research Asia DKI group
📫 Paper Code Collection (MSRA DKI Group) This repo hosts multiple open-source codes of the Microsoft Research Asia DKI Group. You could find the corr
Unofficial Pytorch Lightning implementation of Contrastive Syn-to-Real Generalization (ICLR, 2021)
Unofficial Pytorch Lightning implementation of Contrastive Syn-to-Real Generalization (ICLR, 2021)
Official repository for CVPR21 paper "Deep Stable Learning for Out-Of-Distribution Generalization".
StableNet StableNet is a deep stable learning method for out-of-distribution generalization. This is the official repo for CVPR21 paper "Deep Stable L
Official pytorch implementation of "Feature Stylization and Domain-aware Contrastive Loss for Domain Generalization" ACMMM 2021 (Oral)
Feature Stylization and Domain-aware Contrastive Loss for Domain Generalization This is an official implementation of "Feature Stylization and Domain-
[ICCV 2021] Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neural Networks in Frequency Domain
Amplitude-Phase Recombination (ICCV'21) Official PyTorch implementation of "Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neur
Official PyTorch implementation of the Fishr regularization for out-of-distribution generalization
Fishr: Invariant Gradient Variances for Out-of-distribution Generalization Official PyTorch implementation of the Fishr regularization for out-of-dist
The official repository for our paper "The Devil is in the Detail: Simple Tricks Improve Systematic Generalization of Transformers". We significantly improve the systematic generalization of transformer models on a variety of datasets using simple tricks and careful considerations.
Codebase for training transformers on systematic generalization datasets. The official repository for our EMNLP 2021 paper The Devil is in the Detail:
CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)
CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021) This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm
CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)
CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021) This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm
Code used to generate the results appearing in "Train longer, generalize better: closing the generalization gap in large batch training of neural networks"
Train longer, generalize better - Big batch training This is a code repository used to generate the results appearing in "Train longer, generalize bet
Official implementation of paper Gradient Matching for Domain Generalization
Gradient Matching for Domain Generalisation This is the official PyTorch implementation of Gradient Matching for Domain Generalisation. In our paper,
PyTorch evaluation code for Delving Deep into the Generalization of Vision Transformers under Distribution Shifts.
Out-of-distribution Generalization Investigation on Vision Transformers This repository contains PyTorch evaluation code for Delving Deep into the Gen
Sharpness-Aware Minimization for Efficiently Improving Generalization
Sharpness-Aware-Minimization-TensorFlow This repository provides a minimal implementation of sharpness-aware minimization (SAM) (Sharpness-Aware Minim
Benchmarks for semi-supervised domain generalization.
Semi-Supervised Domain Generalization This code is the official implementation of the following paper: Semi-Supervised Domain Generalization with Stoc
Systematic generalisation with group invariant predictions
Requirements are Python 3, TensorFlow v1.14, Numpy, Scipy, Scikit-Learn, Matplotlib, Pillow, Scikit-Image, h5py, tqdm. Experiments were run on V100 GPUs (16 and 32GB).
Tilted Empirical Risk Minimization (ICLR '21)
Tilted Empirical Risk Minimization This repository contains the implementation for the paper Tilted Empirical Risk Minimization ICLR 2021 Empirical ri
Domain Generalization with MixStyle, ICLR'21.
MixStyle This repo contains the code of our ICLR'21 paper, "Domain Generalization with MixStyle". The OpenReview link is https://openreview.net/forum?
A list of papers regarding generalization in (deep) reinforcement learning
A list of papers regarding generalization in (deep) reinforcement learning
The code release of paper 'Domain Generalization for Medical Imaging Classification with Linear-Dependency Regularization' NIPS 2020.
Domain Generalization for Medical Imaging Classification with Linear Dependency Regularization The code release of paper 'Domain Generalization for Me
[CVPR'21] FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space
FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space by Quande Liu, Cheng Chen, Ji
Python package for stacking (machine learning technique)
vecstack Python package for stacking (stacked generalization) featuring lightweight functional API and fully compatible scikit-learn API Convenient wa
Library for machine learning stacking generalization.
stacked_generalization Implemented machine learning *stacking technic[1]* as handy library in Python. Feature weighted linear stacking is also availab
Stacked Generalization (Ensemble Learning)
Stacking (stacked generalization) Overview ikki407/stacking - Simple and useful stacking library, written in Python. User can use models of scikit-lea
A PyTorch implementation of Sharpness-Aware Minimization for Efficiently Improving Generalization
sam.pytorch A PyTorch implementation of Sharpness-Aware Minimization for Efficiently Improving Generalization ( Foret+2020) Paper, Official implementa
Library for machine learning stacking generalization.
stacked_generalization Implemented machine learning *stacking technic[1]* as handy library in Python. Feature weighted linear stacking is also availab