57 Repositories
Python weighted-knn Libraries
Multiple-criteria decision-making (MCDM) with Electre, Promethee, Weighted Sum and Pareto
EasyMCDM - Quick Installation methods Install with PyPI Once you have created your Python environment (Python 3.6+) you can simply type: pip3 install
Product-based-recommendation-system - A product based recommendation system which uses Machine learning algorithm such as KNN and cosine similarity
Product-based-recommendation-system A product based recommendation system which
Graph Coloring - Weighted Vertex Coloring Problem
Graph Coloring - Weighted Vertex Coloring Problem This project proposes several local searches and an MCTS algorithm for the weighted vertex coloring
Sleep stages are classified with the help of ML. We have used 4 different ML algorithms (SVM, KNN, RF, NN) to demonstrate them
Sleep stages are classified with the help of ML. We have used 4 different ML algorithms (SVM, KNN, RF, NN) to demonstrate them.
Built various Machine Learning algorithms (Logistic Regression, Random Forest, KNN, Gradient Boosting and XGBoost. etc)
Built various Machine Learning algorithms (Logistic Regression, Random Forest, KNN, Gradient Boosting and XGBoost. etc). Structured a custom ensemble model and a neural network. Found a outperformed model for heart failure prediction accuracy of 88 percent.
GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors
GPU implementation of kNN and SNN GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors Supported by numba cuda and faiss library E
Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently
Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently This repository is the official implementat
This project has Classification and Clustering done Via kNN and K-Means respectfully
This project has Classification and Clustering done Via kNN and K-Means respectfully. It later tests its efficiency via F1/accuracy/recall/precision for kNN and Davies-Bouldin Index for Clustering. The Data is also visually represented.
LightNet++: Boosted Light-weighted Networks for Real-time Semantic Segmentation
LightNet++ !!!New Repo.!!! ⇒ EfficientNet.PyTorch: Concise, Modular, Human-friendly PyTorch implementation of EfficientNet with Pre-trained Weights !!
This is my implementation on the K-nearest neighbors algorithm from scratch using Python
K Nearest Neighbors (KNN) algorithm In this Machine Learning world, there are various algorithms designed for classification problems such as Logistic
Text Summarization - WCN — Weighted Contextual N-gram method for evaluation of Text Summarization
Text Summarization WCN — Weighted Contextual N-gram method for evaluation of Text Summarization In this project, I fine tune T5 model on Extreme Summa
Implementation of hyperparameter optimization/tuning methods for machine learning & deep learning models
Hyperparameter Optimization of Machine Learning Algorithms This code provides a hyper-parameter optimization implementation for machine learning algor
Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application
FPT_data_centric_competition - Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application
Using Bayesian, KNN, Logistic Regression to classify spam and non-spam.
Make Sure the dataset file "spamData.mat" is in the folder spam\src Environment: Python --version = 3.7 Third Party: numpy, matplotlib, math, scipy
Python KNN model: Predicting a probability of getting a work visa. Tableau: Non-immigrant visas over the years.
The value of international students to the United States. Probability of getting a non-immigrant visa. Project timeline: Jan 2021 - April 2021 Project
Implementation of K-Nearest Neighbors Algorithm Using PySpark
KNN With Spark Implementation of KNN using PySpark. The KNN was used on two separate datasets (https://archive.ics.uci.edu/ml/datasets/iris and https:
Weighted K Nearest Neighbors (kNN) algorithm implemented on python from scratch.
kNN_From_Scratch I implemented the k nearest neighbors (kNN) classification algorithm on python. This algorithm is used to predict the classes of new
Supervised & unsupervised machine-learning techniques are applied to the database of weighted P4s which admit Calabi-Yau hypersurfaces.
Weighted Projective Spaces ML Description: The database of 5-vectors describing 4d weighted projective spaces which admit Calabi-Yau hypersurfaces are
A `Neural = Symbolic` framework for sound and complete weighted real-value logic
Logical Neural Networks LNNs are a novel Neuro = symbolic framework designed to seamlessly provide key properties of both neural nets (learning) and s
Machine Learning algorithms implementation.
Machine Learning Algorithms Machine Learning algorithms implementation. What can I find here? ML Algorithms KNN K-Means-Clustering SVM (MultiClass) Pe
Implementation of Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement Learning
advantage-weighted-regression Implementation of Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement Learning, by Peng et al. (
Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method.
Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method.
Area-weighted venn-diagrams for Python/matplotlib
Venn diagram plotting routines for Python/Matplotlib Routines for plotting area-weighted two- and three-circle venn diagrams. Installation The simples
PyNNDescent is a Python nearest neighbor descent for approximate nearest neighbors.
PyNNDescent PyNNDescent is a Python nearest neighbor descent for approximate nearest neighbors. It provides a python implementation of Nearest Neighbo
MinHash, LSH, LSH Forest, Weighted MinHash, HyperLogLog, HyperLogLog++, LSH Ensemble
datasketch: Big Data Looks Small datasketch gives you probabilistic data structures that can process and search very large amount of data super fast,
Non-Metric Space Library (NMSLIB): An efficient similarity search library and a toolkit for evaluation of k-NN methods for generic non-metric spaces.
Non-Metric Space Library (NMSLIB) Important Notes NMSLIB is generic but fast, see the results of ANN benchmarks. A standalone implementation of our fa
implementation of the KNN algorithm on crab biometrics dataset for CS16
crab-knn implementation of the KNN algorithm in Python applied to biometrics data of purple rock crabs (leptograpsus variegatus) to classify the sex o
This repo contains the code for paper Inverse Weighted Survival Games
Inverse-Weighted-Survival-Games This repo contains the code for paper Inverse Weighted Survival Games instructions general loss function (--lfn) can b
Benchmark library for high-dimensional HPO of black-box models based on Weighted Lasso regression
LassoBench LassoBench is a library for high-dimensional hyperparameter optimization benchmarks based on Weighted Lasso regression. Note: LassoBench is
Paper Code:A Self-adaptive Weighted Differential Evolution Approach for Large-scale Feature Selection
1. SaWDE.m is the main function 2. DataPartition.m is used to randomly partition the original data into training sets and test sets with a ratio of 7
My project contrasts K-Nearest Neighbors and Random Forrest Regressors on Real World data
kNN-vs-RFR My project contrasts K-Nearest Neighbors and Random Forrest Regressors on Real World data In many areas, rental bikes have been launched to
Code for the Weighted, Accelerated and Restarted Primal-dual algorithm. This algorithm achieves stable linear convergence for reconstruction from undersampled noisy measurements under an approximate sharpness condition. See the paper for details.
WARPd Code for the Weighted, Accelerated and Restarted Primal-dual algorithm. This algorithm achieves stable linear convergence for reconstruction fro
A simple voice detection system which can be applied practically for designing a device with capability to detect a baby’s cry and automatically turning on music
Auto-Baby-Cry-Detection-with-Music-Player A simple voice detection system which can be applied practically for designing a device with capability to d
This is a deep learning-based method to segment deep brain structures and a brain mask from T1 weighted MRI.
DBSegment This tool generates 30 deep brain structures segmentation, as well as a brain mask from T1-Weighted MRI. The whole procedure should take ~1
Official Implementation (PyTorch) of "Point Cloud Augmentation with Weighted Local Transformations", ICCV 2021
PointWOLF: Point Cloud Augmentation with Weighted Local Transformations This repository is the implementation of PointWOLF(To appear). Sihyeon Kim1*,
Implementations of Machine Learning models, Regularizers, Optimizers and different Cost functions.
Linear Models Implementations of LinearRegression, LassoRegression and RidgeRegression with appropriate Regularizers and Optimizers. Linear Regression
Code for paper "Energy-Constrained Compression for Deep Neural Networks via Weighted Sparse Projection and Layer Input Masking"
model_based_energy_constrained_compression Code for paper "Energy-Constrained Compression for Deep Neural Networks via Weighted Sparse Projection and
Unique image & metadata generation using weighted layer collections.
nft-generator-py nft-generator-py is a python based NFT generator which programatically generates unique images using weighted layer files. The progra
Industrial knn-based anomaly detection for images. Visit streamlit link to check out the demo.
Industrial KNN-based Anomaly Detection ⭐ Now has streamlit support! ⭐ Run $ streamlit run streamlit_app.py This repo aims to reproduce the results of
ANNchor is a python library which constructs approximate k-nearest neighbour graphs for slow metrics.
Fast k-NN graph construction for slow metrics
CondenseNet: Light weighted CNN for mobile devices
CondenseNets This repository contains the code (in PyTorch) for "CondenseNet: An Efficient DenseNet using Learned Group Convolutions" paper by Gao Hua
Implements an infinite sum of poisson-weighted convolutions
An infinite sum of Poisson-weighted convolutions Kyle Cranmer, Aug 2018 If viewing on GitHub, this looks better with nbviewer: click here Consider a v
Weighted QMIX: Expanding Monotonic Value Function Factorisation
This repo contains the cleaned-up code that was used in "Weighted QMIX: Expanding Monotonic Value Function Factorisation"
30 Days Of Machine Learning Using Pytorch
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch
Automatic differentiation with weighted finite-state transducers.
GTN: Automatic Differentiation with WFSTs Quickstart | Installation | Documentation What is GTN? GTN is a framework for automatic differentiation with
Code for paper: Group-CAM: Group Score-Weighted Visual Explanations for Deep Convolutional Networks
Group-CAM By Zhang, Qinglong and Rao, Lu and Yang, Yubin [State Key Laboratory for Novel Software Technology at Nanjing University] This repo is the o
Official code for "Mean Shift for Self-Supervised Learning"
MSF Official code for "Mean Shift for Self-Supervised Learning" Requirements Python = 3.7.6 PyTorch = 1.4 torchvision = 0.5.0 faiss-gpu = 1.6.1 In
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch
30 Days Of Machine Learning Using Pytorch Objective of the repository is to learn and build machine learning models using Pytorch. List of Algorithms
Automatically create Faiss knn indices with the most optimal similarity search parameters.
It selects the best indexing parameters to achieve the highest recalls given memory and query speed constraints.
Fast solver for L1-type problems: Lasso, sparse Logisitic regression, Group Lasso, weighted Lasso, Multitask Lasso, etc.
celer Fast algorithm to solve Lasso-like problems with dual extrapolation. Currently, the package handles the following problems: Lasso weighted Lasso
Monocular Depth Estimation - Weighted-average prediction from multiple pre-trained depth estimation models
merged_depth runs (1) AdaBins, (2) DiverseDepth, (3) MiDaS, (4) SGDepth, and (5) Monodepth2, and calculates a weighted-average per-pixel absolute dept
Pandas-based utility to calculate weighted means, medians, distributions, standard deviations, and more.
weightedcalcs weightedcalcs is a pandas-based Python library for calculating weighted means, medians, standard deviations, and more. Features Plays we
A data-driven approach to quantify the value of classifiers in a machine learning ensemble.
Documentation | External Resources | Research Paper Shapley is a Python library for evaluating binary classifiers in a machine learning ensemble. The
Applications using the GTN library and code to reproduce experiments in "Differentiable Weighted Finite-State Transducers"
gtn_applications An applications library using GTN. Current examples include: Offline handwriting recognition Automatic speech recognition Installing
Machine learning, in numpy
numpy-ml Ever wish you had an inefficient but somewhat legible collection of machine learning algorithms implemented exclusively in NumPy? No? Install
python-timbl, originally developed by Sander Canisius, is a Python extension module wrapping the full TiMBL C++ programming interface. With this module, all functionality exposed through the C++ interface is also available to Python scripts. Being able to access the API from Python greatly facilitates prototyping TiMBL-based applications.
README: python-timbl Authors: Sander Canisius, Maarten van Gompel Contact: [email protected] Web site: https://github.com/proycon/python-timbl/ pytho
A data-driven approach to quantify the value of classifiers in a machine learning ensemble.
Documentation | External Resources | Research Paper Shapley is a Python library for evaluating binary classifiers in a machine learning ensemble. The