1687 Repositories
Python Graph-Analysis-From-Scratch Libraries
Code for KDD'20 "An Efficient Neighborhood-based Interaction Model for Recommendation on Heterogeneous Graph"
Heterogeneous INteract and aggreGatE (GraphHINGE) This is a pytorch implementation of GraphHINGE model. This is the experiment code in the following w
A linter to manage all your python exceptions and try/except blocks (limited only for those who like dinosaurs).
Manage your exceptions in Python like a PRO Currently in BETA. Inspired by this blog post. I shared the building process of this tool here. “For those
box is a text-based visual programming language inspired by Unreal Engine Blueprint function graphs.
Box is a text-based visual programming language inspired by Unreal Engine blueprint function graphs. $ cat factorial.box ┌─ƒ(Factorial)───┐
Pose Detection and Machine Learning for real-time body posture analysis during exercise to provide audiovisual feedback on improvement of form.
Posture: Pose Tracking and Machine Learning for prescribing corrective suggestions to improve posture and form while exercising. This repository conta
PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021.
GCResNet PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021. The code will
This is my reading list for my PhD in AI, NLP, Deep Learning and more.
This is my reading list for my PhD in AI, NLP, Deep Learning and more.
Visual Python is a GUI-based Python code generator, developed on the Jupyter Notebook environment as an extension.
Visual Python is a GUI-based Python code generator, developed on the Jupyter Notebook environment as an extension.
This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network.
GPRGNN This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network. Hidden state feature extraction i
Official PyTorch implementation of "Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics".
Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics This repository is the official PyTorch implementation of "Physics-aware Differ
Code for "Learning Canonical Representations for Scene Graph to Image Generation", Herzig & Bar et al., ECCV2020
Learning Canonical Representations for Scene Graph to Image Generation (ECCV 2020) Roei Herzig*, Amir Bar*, Huijuan Xu, Gal Chechik, Trevor Darrell, A
Pytorch implementation of “Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement”
Graph-to-Graph Transformers Self-attention models, such as Transformer, have been hugely successful in a wide range of natural language processing (NL
Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation in PyTorch
StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Ima
Graph4nlp is the library for the easy use of Graph Neural Networks for NLP
Graph4NLP Graph4NLP is an easy-to-use library for R&D at the intersection of Deep Learning on Graphs and Natural Language Processing (i.e., DLG4NLP).
Implementation of Graph Transformer in Pytorch, for potential use in replicating Alphafold2
Graph Transformer - Pytorch Implementation of Graph Transformer in Pytorch, for potential use in replicating Alphafold2. This was recently used by bot
PyTorch implementation of ARM-Net: Adaptive Relation Modeling Network for Structured Data.
A ready-to-use framework of latest models for structured (tabular) data learning with PyTorch. Applications include recommendation, CRT prediction, healthcare analytics, and etc.
Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network
DeepCDR Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network This work has been accepted to ECCB2020 and was also published in the
A Python Module That Uses ANN To Predict A Stocks Price And Also Provides Accurate Technical Analysis With Many High Potential Implementations!
Stox ⚡ A Python Module For The Stock Market ⚡ A Module to predict the "close price" for the next day and give "technical analysis". It uses a Neural N
Gamestonk Terminal is an awesome stock and crypto market terminal
Gamestonk Terminal is an awesome stock and crypto market terminal. A FOSS alternative to Bloomberg Terminal.
30 Days Of Machine Learning Using Pytorch
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch
A python to scratch API connector. Can fetch data from the API and send it back in cloud variables.
Scratch2py Scratch2py or S2py is a easy to use, versatile tool to communicate with the Scratch API Based of scratchclient by Raihan142857 Installation
FinGAT: A Financial Graph Attention Networkto Recommend Top-K Profitable Stocks
FinGAT: A Financial Graph Attention Networkto Recommend Top-K Profitable Stocks This is our implementation for the paper: FinGAT: A Financial Graph At
Random Walk Graph Neural Networks
Random Walk Graph Neural Networks This repository is the official implementation of Random Walk Graph Neural Networks. Requirements Code is written in
Code for our TKDE paper "Understanding WeChat User Preferences and “Wow” Diffusion"
wechat-wow-analysis Understanding WeChat User Preferences and “Wow” Diffusion. Fanjin Zhang, Jie Tang, Xueyi Liu, Zhenyu Hou, Yuxiao Dong, Jing Zhang,
JittorVis is a deep neural network computational graph visualization library based on Jittor.
JittorVis - Visual understanding of deep learning model.
Create a Neo4J graph of users and roles trust policies within an AWS Organization.
AWS_ORG_MAPPER This tool uses sso-oidc to authenticate to the AWS organization. Once authenticated the tool will attempt to enumerate all users and ro
frida-based ceserver. iOS analysis is possible with Cheat Engine.
frida-ceserver frida-based ceserver. iOS analysis is possible with Cheat Engine. Original by Dark Byte. Usage Install frida on iOS. python main.py Cyd
TunBERT is the first release of a pre-trained BERT model for the Tunisian dialect using a Tunisian Common-Crawl-based dataset.
TunBERT is the first release of a pre-trained BERT model for the Tunisian dialect using a Tunisian Common-Crawl-based dataset. TunBERT was applied to three NLP downstream tasks: Sentiment Analysis (SA), Tunisian Dialect Identification (TDI) and Reading Comprehension Question-Answering (RCQA)
Sequence model architectures from scratch in PyTorch
This repository implements a variety of sequence model architectures from scratch in PyTorch. Effort has been put to make the code well structured so that it can serve as learning material. The training loop implements the learner design pattern from fast.ai in pure PyTorch, with access to the loop provided through callbacks. Detailed logging and graphs are also provided with python logging and wandb. Additional implementations will be added.
Continuous Diffusion Graph Neural Network
We present Graph Neural Diffusion (GRAND) that approaches deep learning on graphs as a continuous diffusion process and treats Graph Neural Networks (GNNs) as discretisations of an underlying PDE.
graph learning code for ogb
The final code for OGB Installation Requirements: ogb=1.3.1 torch=1.7.0 torch-geometric=1.7.0 torch-scatter=2.0.6 torch-sparse=0.6.9 Baseline models T
🧪 Panel-Chemistry - exploratory data analysis and build powerful data and viz tools within the domain of Chemistry using Python and HoloViz Panel.
🧪📈 🐍. The purpose of the panel-chemistry project is to make it really easy for you to do DATA ANALYSIS and build powerful DATA AND VIZ APPLICATIONS within the domain of Chemistry using using Python and HoloViz Panel.
spafe: Simplified Python Audio-Features Extraction
spafe aims to simplify features extractions from mono audio files. The library can extract of the following features: BFCC, LFCC, LPC, LPCC, MFCC, IMFCC, MSRCC, NGCC, PNCC, PSRCC, PLP, RPLP, Frequency-stats etc. It also provides various filterbank modules (Mel, Bark and Gammatone filterbanks) and other spectral statistics.
🐸 Identify anything. pyWhat easily lets you identify emails, IP addresses, and more. Feed it a .pcap file or some text and it'll tell you what it is! 🧙♀️
🐸 Identify anything. pyWhat easily lets you identify emails, IP addresses, and more. Feed it a .pcap file or some text and it'll tell you what it is! 🧙♀️
Kats is a toolkit to analyze time series data, a lightweight, easy-to-use, and generalizable framework to perform time series analysis.
Kats, a kit to analyze time series data, a lightweight, easy-to-use, generalizable, and extendable framework to perform time series analysis, from understanding the key statistics and characteristics, detecting change points and anomalies, to forecasting future trends.
Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN
Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN If you use this code for your research, please cite ou
MDAnalysis tool to calculate membrane curvature.
The MDAkit for membrane curvature analysis is part of the Google Summer of Code program and it is linked to a Code of Conduct.
Using pretrained language models for biomedical knowledge graph completion.
LMs for biomedical KG completion This repository contains code to run the experiments described in: Scientific Language Models for Biomedical Knowledg
NBEATSx: Neural basis expansion analysis with exogenous variables
NBEATSx: Neural basis expansion analysis with exogenous variables We extend the NBEATS model to incorporate exogenous factors. The resulting method, c
[ICML 2021] "Graph Contrastive Learning Automated" by Yuning You, Tianlong Chen, Yang Shen, Zhangyang Wang
Graph Contrastive Learning Automated PyTorch implementation for Graph Contrastive Learning Automated [talk] [poster] [appendix] Yuning You, Tianlong C
ML Optimizers from scratch using JAX
Toy implementations of some popular ML optimizers using Python/JAX
Leveraging Two Types of Global Graph for Sequential Fashion Recommendation, ICMR 2021
This is the repo for the paper: Leveraging Two Types of Global Graph for Sequential Fashion Recommendation Requirements OS: Ubuntu 16.04 or higher ver
A set of functions and analysis classes for solvation structure analysis
SolvationAnalysis The macroscopic behavior of a liquid is determined by its microscopic structure. For ionic systems, like batteries and many enzymes,
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".
Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl
Implementation of "GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings" in PyTorch
PyGAS: Auto-Scaling GNNs in PyG PyGAS is the practical realization of our G NN A uto S cale (GAS) framework, which scales arbitrary message-passing GN
Code for Graph-to-Tree Learning for Solving Math Word Problems (ACL 2020)
Graph-to-Tree Learning for Solving Math Word Problems PyTorch implementation of Graph based Math Word Problem solver described in our ACL 2020 paper G
Source codes of CenterTrack++ in 2021 ICME Workshop on Big Surveillance Data Processing and Analysis
MOT Tracked object bounding box association (CenterTrack++) New association method based on CenterTrack. Two new branches (Tracked Size and IOU) are a
Code implementation of "Sparsity Probe: Analysis tool for Deep Learning Models"
Sparsity Probe: Analysis tool for Deep Learning Models This repository is a limited implementation of Sparsity Probe: Analysis tool for Deep Learning
InsightFace: 2D and 3D Face Analysis Project on MXNet and PyTorch
InsightFace: 2D and 3D Face Analysis Project on MXNet and PyTorch
Unofficial TensorFlow implementation of Protein Interface Prediction using Graph Convolutional Networks.
[TensorFlow] Protein Interface Prediction using Graph Convolutional Networks Unofficial TensorFlow implementation of Protein Interface Prediction usin
The source code of the paper "Understanding Graph Neural Networks from Graph Signal Denoising Perspectives"
GSDN-F and GSDN-EF This repository provides a reference implementation of GSDN-F and GSDN-EF as described in the paper "Understanding Graph Neural Net
Degree-Quant: Quantization-Aware Training for Graph Neural Networks.
Degree-Quant This repo provides a clean re-implementation of the code associated with the paper Degree-Quant: Quantization-Aware Training for Graph Ne
Paddle implementation for "Highly Efficient Knowledge Graph Embedding Learning with Closed-Form Orthogonal Procrustes Analysis" (NAACL 2021)
ProcrustEs-KGE Paddle implementation for Highly Efficient Knowledge Graph Embedding Learning with Orthogonal Procrustes Analysis 🙈 A more detailed re
Using context-free grammar formalism to parse English sentences to determine their structure to help computer to better understand the meaning of the sentence.
Sentance Parser Executing the Program Make sure Python 3.6+ is installed. Install requirements $ pip install requirements.txt Run the program:
Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis in JAX
SYMPAIS: Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis Overview | Installation | Documentation | Examples | Notebo
Code for the paper "How Attentive are Graph Attention Networks?"
How Attentive are Graph Attention Networks? This repository is the official implementation of How Attentive are Graph Attention Networks?. The PyTorch
🔬 A curated list of awesome machine learning strategies & tools in financial market.
🔬 A curated list of awesome machine learning strategies & tools in financial market.
APKLeaks - Scanning APK file for URIs, endpoints & secrets.
APKLeaks - Scanning APK file for URIs, endpoints & secrets.
This is the repo for the paper `SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization'. (published in Bioinformatics'21)
SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization This is the code for our paper ``SumGNN: Multi-typed Drug
A tensorflow implementation of GCN-LPA
GCN-LPA This repository is the implementation of GCN-LPA (arXiv): Unifying Graph Convolutional Neural Networks and Label Propagation Hongwei Wang, Jur
Implementation for Simple Spectral Graph Convolution in ICLR 2021
Simple Spectral Graph Convolutional Overview This repo contains an example implementation of the Simple Spectral Graph Convolutional (S^2GC) model. Th
(AAAI2020)Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing
Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing This repository contains pytorch source code for AAAI2020 oral paper: Grapy-ML
jaxfg - Factor graph-based nonlinear optimization library for JAX.
Factor graphs + nonlinear optimization in JAX
Explore related sequences in the OEIS
OEIS explorer This is a tool for exploring two different kinds of relationships between sequences in the OEIS: mentions (links) of other sequences on
Solve various integral equations using numerical methods in Python
Solve Volterra and Fredholm integral equations This Python package estimates Volterra and Fredholm integral equations using known techniques. Installa
A Python Module That Uses ANN To Predict A Stocks Price And Also Provides Accurate Technical Analysis With Many High Potential Implementations!
Stox A Module to predict the "close price" for the next day and give "technical analysis". It uses a Neural Network and the LSTM algorithm to predict
Deep functional residue identification
DeepFRI Deep functional residue identification Citing @article {Gligorijevic2019, author = {Gligorijevic, Vladimir and Renfrew, P. Douglas and Koscio
pyprobables is a pure-python library for probabilistic data structures
pyprobables is a pure-python library for probabilistic data structures. The goal is to provide the developer with a pure-python implementation of common probabilistic data-structures to use in their work.
leafmap - A Python package for geospatial analysis and interactive mapping in a Jupyter environment.
A Python package for geospatial analysis and interactive mapping with minimal coding in a Jupyter environment
SiamMOT is a region-based Siamese Multi-Object Tracking network that detects and associates object instances simultaneously.
SiamMOT: Siamese Multi-Object Tracking
Code for reproducing our analysis in the paper titled: Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency
Image Crop Analysis This is a repo for the code used for reproducing our Image Crop Analysis paper as shared on our blog post. If you plan to use this
Tensorflow implementation for Self-supervised Graph Learning for Recommendation
If the compilation is successful, the evaluator of cpp implementation will be called automatically. Otherwise, the evaluator of python implementation will be called.
Codes for our IJCAI21 paper: Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization
DDAMS This is the pytorch code for our IJCAI 2021 paper Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization [Arxiv Pr
An Unsupervised Graph-based Toolbox for Fraud Detection
An Unsupervised Graph-based Toolbox for Fraud Detection Introduction: UGFraud is an unsupervised graph-based fraud detection toolbox that integrates s
Official source code to CVPR'20 paper, "When2com: Multi-Agent Perception via Communication Graph Grouping"
When2com: Multi-Agent Perception via Communication Graph Grouping This is the PyTorch implementation of our paper: When2com: Multi-Agent Perception vi
Expressive Power of Invariant and Equivaraint Graph Neural Networks (ICLR 2021)
Expressive Power of Invariant and Equivaraint Graph Neural Networks In this repository, we show how to use powerful GNN (2-FGNN) to solve a graph alig
[WWW 2021] Source code for "Graph Contrastive Learning with Adaptive Augmentation"
GCA Source code for Graph Contrastive Learning with Adaptive Augmentation (WWW 2021) For example, to run GCA-Degree under WikiCS, execute: python trai
A PyTorch Lightning solution to training OpenAI's CLIP from scratch.
train-CLIP 📎 A PyTorch Lightning solution to training CLIP from scratch. Goal ⚽ Our aim is to create an easy to use Lightning implementation of OpenA
Implementation of paper Does syntax matter? A strong baseline for Aspect-based Sentiment Analysis with RoBERTa.
RoBERTaABSA This repo contains the code for NAACL 2021 paper titled Does syntax matter? A strong baseline for Aspect-based Sentiment Analysis with RoB
tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.
Time series Timeseries Deep Learning Pytorch fastai - State-of-the-art Deep Learning with Time Series and Sequences in Pytorch / fastai
CellProfiler is a open-source application for biological image analysis
CellProfiler is a free open-source software designed to enable biologists without training in computer vision or programming to quantitatively measure phenotypes from thousands of images automatically.
Crypto-curriences analysis
Crypto_analysis Discription: simple streamlit(screener) app to make MMA and OSC analysis for cyrpto-currenices, and gives resaults for which coins are
A collection of GNN-based fake news detection models.
This repo includes the Pytorch-Geometric implementation of a series of Graph Neural Network (GNN) based fake news detection models. All GNN models are implemented and evaluated under the User Preference-aware Fake News Detection (UPFD) framework. The fake news detection problem is instantiated as a graph classification task under the UPFD framework.
Self-Supervised Contrastive Learning of Music Spectrograms
Self-Supervised Music Analysis Self-Supervised Contrastive Learning of Music Spectrograms Dataset Songs on the Billboard Year End Hot 100 were collect
Simple HTML and PDF document generator for Python - with built-in support for popular data analysis and plotting libraries.
Esparto is a simple HTML and PDF document generator for Python. Its primary use is for generating shareable single page reports with content from popular analytics and data science libraries.
A static analysis library for computing graph representations of Python programs suitable for use with graph neural networks.
python_graphs This package is for computing graph representations of Python programs for machine learning applications. It includes the following modu
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch
30 Days Of Machine Learning Using Pytorch Objective of the repository is to learn and build machine learning models using Pytorch. List of Algorithms
Identify the emotion of multiple speakers in an Audio Segment
MevonAI - Speech Emotion Recognition
Code for paper PairRE: Knowledge Graph Embeddings via Paired Relation Vectors.
PairRE Code for paper PairRE: Knowledge Graph Embeddings via Paired Relation Vectors. This implementation of PairRE for Open Graph Benchmak datasets (
Statsmodels: statistical modeling and econometrics in Python
About statsmodels statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics an
Probabilistic Programming in Python: Bayesian Modeling and Probabilistic Machine Learning with Aesara
PyMC3 is a Python package for Bayesian statistical modeling and Probabilistic Machine Learning focusing on advanced Markov chain Monte Carlo (MCMC) an
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)
Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext
Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis
Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis. You write a high level configuration file specifying your in
SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks (Scientific Reports)
SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks Molecular interaction networks are powerful resources for the discovery. While dee
Generative Models for Graph-Based Protein Design
Graph-Based Protein Design This repo contains code for Generative Models for Graph-Based Protein Design by John Ingraham, Vikas Garg, Regina Barzilay
Codes for our paper "SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge" (EMNLP 2020)
SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge Introduction SentiLARE is a sentiment-aware pre-trained language
A simple image/video to Desmos graph converter run locally
Desmos Bezier Renderer A simple image/video to Desmos graph converter run locally Sample Result Setup Install dependencies apt update apt install git
A Research-oriented Federated Learning Library and Benchmark Platform for Graph Neural Networks. Accepted to ICLR'2021 - DPML and MLSys'21 - GNNSys workshops.
FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks A Research-oriented Federated Learning Library and Benchmark Platform
Implementation of different ML Algorithms from scratch, written in Python 3.x
Implementation of different ML Algorithms from scratch, written in Python 3.x
ArviZ is a Python package for exploratory analysis of Bayesian models
ArviZ (pronounced "AR-vees") is a Python package for exploratory analysis of Bayesian models. Includes functions for posterior analysis, data storage, model checking, comparison and diagnostics
Boost learning for GNNs from the graph structure under challenging heterophily settings. (NeurIPS'20)
Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu,