1046 Repositories
Python Semi-Structured-Dataset-Representations Libraries
Image Segmentation with U-Net Algorithm on Carvana Dataset using AWS Sagemaker
Image Segmentation with U-Net Algorithm on Carvana Dataset using AWS Sagemaker This is a full project of image segmentation using the model built with
Implementations of LSTM: A Search Space Odyssey variants and their training results on the PTB dataset.
An LSTM Odyssey Code for training variants of "LSTM: A Search Space Odyssey" on Fomoro. Check out the blog post. Training Install TensorFlow. Clone th
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura
Official tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”
Tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”.
MatchGAN: A Self-supervised Semi-supervised Conditional Generative Adversarial Network
MatchGAN: A Self-supervised Semi-supervised Conditional Generative Adversarial Network This repository is the official implementation of MatchGAN: A S
AsymmetricGAN - Dual Generator Generative Adversarial Networks for Multi-Domain Image-to-Image Translation
AsymmetricGAN for Image-to-Image Translation AsymmetricGAN Framework for Multi-Domain Image-to-Image Translation AsymmetricGAN Framework for Hand Gest
Code and dataset for AAAI 2021 paper FixMyPose: Pose Correctional Describing and Retrieval Hyounghun Kim, Abhay Zala, Graham Burri, Mohit Bansal.
FixMyPose / फिक्समाइपोज़ Code and dataset for AAAI 2021 paper "FixMyPose: Pose Correctional Describing and Retrieval" Hyounghun Kim*, Abhay Zala*, Grah
This project provides the code and datasets for 'CapSal: Leveraging Captioning to Boost Semantics for Salient Object Detection', CVPR 2019.
Code-and-Dataset-for-CapSal This project provides the code and datasets for 'CapSal: Leveraging Captioning to Boost Semantics for Salient Object Detec
Image segmentation with private İstanbul Dataset
Image Segmentation This repo was created for academic research and test result. Repo will update after academic article online. This repo contains wei
Fashion Entity Classification
Fashion-Entity-Classification - Fashion-MNIST is a dataset of Zalando's article images—consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grayscale image, associated with a label from 10 classes. Zalando intends Fashion-MNIST to serve as a direct drop-in replacement for the original MNIST dataset for benchmarking machine learning algorithms. It shares the same image size and structure of training and testing splits.
Adversarial-autoencoders - Tensorflow implementation of Adversarial Autoencoders
Adversarial Autoencoders (AAE) Tensorflow implementation of Adversarial Autoencoders (ICLR 2016) Similar to variational autoencoder (VAE), AAE imposes
Show-attend-and-tell - TensorFlow Implementation of "Show, Attend and Tell"
Show, Attend and Tell Update (December 2, 2016) TensorFlow implementation of Show, Attend and Tell: Neural Image Caption Generation with Visual Attent
March-madness - March Madness results 1985-2021
march-madness Results for all 2,268 NCAA Division I Men's Basketball Tournament games since the modern format was introduced in 1985. Includes years,
Fidelipy - Semi-automated trading on fidelity.com
fidelipy fidelipy is a simple Python 3.7+ library for semi-automated trading on fidelity.com. The scope is limited to the Trade Stocks/ETFs simplified
Hybrid CenterNet - Hybrid-supervised object detection / Weakly semi-supervised object detection
Hybrid-Supervised Object Detection System Object detection system trained by hybrid-supervision/weakly semi-supervision (HSOD/WSSOD): This project is
Research - dataset and code for 2016 paper Learning a Driving Simulator
the people's comma the paper Learning a Driving Simulator the comma.ai driving dataset 7 and a quarter hours of largely highway driving. Enough to tra
AutoGluon: AutoML for Text, Image, and Tabular Data
AutoML for Text, Image, and Tabular Data AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in yo
Gans-in-action - Companion repository to GANs in Action: Deep learning with Generative Adversarial Networks
GANs in Action by Jakub Langr and Vladimir Bok List of available code: Chapter 2: Colab, Notebook Chapter 3: Notebook Chapter 4: Notebook Chapter 6: C
Spark-movie-lens - An on-line movie recommender using Spark, Python Flask, and the MovieLens dataset
A scalable on-line movie recommender using Spark and Flask This Apache Spark tutorial will guide you step-by-step into how to use the MovieLens datase
Customer-Transaction-Analysis - This analysis is based on a synthesised transaction dataset containing 3 months worth of transactions for 100 hypothetical customers.
Customer-Transaction-Analysis - This analysis is based on a synthesised transaction dataset containing 3 months worth of transactions for 100 hypothetical customers. It contains purchases, recurring transactions, and salary transactions. The dataset is designed to simulate realistic transaction behaviours that are observed in ANZ’s real transaction data.
Advanced_Data_Visualization_Tools - The present hands-on lab mainly uses Immigration to Canada dataset and employs advanced visualization tools such as word cloud, and waffle plot to display relations between features within the dataset.
Hands-on Practice Learning Lab for Data Science Overview This hands on practice lab is a part of Data Visualization with Python course offered by Cour
Generating .npy dataset and labels out of given image, containing numbers from 0 to 9, using opencv
basic-dataset-generator-from-image-of-numbers generating .npy dataset and labels out of given image, containing numbers from 0 to 9, using opencv inpu
CIFAR-10_train-test - training and testing codes for dataset CIFAR-10
CIFAR-10_train-test - training and testing codes for dataset CIFAR-10
3D dataset of humans Manipulating Objects in-the-Wild (MOW)
MOW dataset [Website] This repository maintains our 3D dataset of humans Manipulating Objects in-the-Wild (MOW). The dataset contains 512 images in th
Pytorch implementation of paper Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data
Pytorch implementation of paper Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data
A state-of-the-art semi-supervised method for image recognition
Mean teachers are better role models Paper ---- NIPS 2017 poster ---- NIPS 2017 spotlight slides ---- Blog post By Antti Tarvainen, Harri Valpola (The
Learning Dynamic Network Using a Reuse Gate Function in Semi-supervised Video Object Segmentation.
Training Script for Reuse-VOS This code implementation of CVPR 2021 paper : Learning Dynamic Network Using a Reuse Gate Function in Semi-supervised Vi
Code used for the results in the paper "ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning"
Code used for the results in the paper "ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning" Getting started Prerequisites CUD
A simple consistency training framework for semi-supervised image semantic segmentation
PseudoSeg: Designing Pseudo Labels for Semantic Segmentation PseudoSeg is a simple consistency training framework for semi-supervised image semantic s
Semi-supervised semantic segmentation needs strong, varied perturbations
Semi-supervised semantic segmentation using CutMix and Colour Augmentation Implementations of our papers: Semi-supervised semantic segmentation needs
A PyTorch-based Semi-Supervised Learning (SSL) Codebase for Pixel-wise (Pixel) Vision Tasks
PixelSSL is a PyTorch-based semi-supervised learning (SSL) codebase for pixel-wise (Pixel) vision tasks. The purpose of this project is to promote the
Learning Saliency Propagation for Semi-supervised Instance Segmentation
Learning Saliency Propagation for Semi-supervised Instance Segmentation PyTorch Implementation This repository contains: the PyTorch implementation of
Semi-Supervised Semantic Segmentation with Cross-Consistency Training (CCT)
Semi-Supervised Semantic Segmentation with Cross-Consistency Training (CCT) Paper, Project Page This repo contains the official implementation of CVPR
Semi-supevised Semantic Segmentation with High- and Low-level Consistency
Semi-supevised Semantic Segmentation with High- and Low-level Consistency This Pytorch repository contains the code for our work Semi-supervised Seman
CapsuleVOS: Semi-Supervised Video Object Segmentation Using Capsule Routing
CapsuleVOS This is the code for the ICCV 2019 paper CapsuleVOS: Semi-Supervised Video Object Segmentation Using Capsule Routing. Arxiv Link: https://a
Code for Universal Semi-Supervised Semantic Segmentation models paper accepted in ICCV 2019
USSS_ICCV19 Code for Universal Semi Supervised Semantic Segmentation accepted to ICCV 2019. Full Paper available at https://arxiv.org/abs/1811.10323.
Adversarial Learning for Semi-supervised Semantic Segmentation, BMVC 2018
Adversarial Learning for Semi-supervised Semantic Segmentation This repo is the pytorch implementation of the following paper: Adversarial Learning fo
Weakly- and Semi-Supervised Panoptic Segmentation (ECCV18)
Weakly- and Semi-Supervised Panoptic Segmentation by Qizhu Li*, Anurag Arnab*, Philip H.S. Torr This repository demonstrates the weakly supervised gro
Implementation of " SESS: Self-Ensembling Semi-Supervised 3D Object Detection" (CVPR2020 Oral)
SESS: Self-Ensembling Semi-Supervised 3D Object Detection Created by Na Zhao from National University of Singapore Introduction This repository contai
Semi-supervised learning for object detection
Source code for STAC: A Simple Semi-Supervised Learning Framework for Object Detection STAC is a simple yet effective SSL framework for visual object
CSD: Consistency-based Semi-supervised learning for object Detection
CSD: Consistency-based Semi-supervised learning for object Detection (NeurIPS 2019) By Jisoo Jeong, Seungeui Lee, Jee-soo Kim, Nojun Kwak Installation
PyTorch implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose
Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The official PyTorch implementation of Neural View S
More Photos are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval
More Photos are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval, CVPR 2021. Ayan Kumar Bhunia, Pinaki nath Chowdh
[CVPR'2020] DeepDeform: Learning Non-rigid RGB-D Reconstruction with Semi-supervised Data
DeepDeform (CVPR'2020) DeepDeform is an RGB-D video dataset containing over 390,000 RGB-D frames in 400 videos, with 5,533 optical and scene flow imag
A PyTorch implementation of Deep SAD, a deep Semi-supervised Anomaly Detection method.
Deep SAD: A Method for Deep Semi-Supervised Anomaly Detection This repository provides a PyTorch implementation of the Deep SAD method presented in ou
Learning to Self-Train for Semi-Supervised Few-Shot
Learning to Self-Train for Semi-Supervised Few-Shot Classification This repository contains the TensorFlow implementation for NeurIPS 2019 Paper "Lear
Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition (NeurIPS 2019)
MLCR This is the source code for paper Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition. Xuesong Niu, Hu Han, Shiguang
A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised Learning
LABES This is the code for EMNLP 2020 paper "A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised L
MixText: Linguistically-Informed Interpolation of Hidden Space for Semi-Supervised Text Classification
MixText This repo contains codes for the following paper: Jiaao Chen, Zichao Yang, Diyi Yang: MixText: Linguistically-Informed Interpolation of Hidden
Semi-SDP Semi-supervised parser for semantic dependency parsing.
Semi-SDP Semi-supervised parser for semantic dependency parsing. This repo contains the code used for the semi-supervised semantic dependency parser i
implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning"
MarginGAN This repository is the implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning". 1."preliminary" is the imp
Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model
Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model Baris Gecer 1, Binod Bhattarai 1
Good Semi-Supervised Learning That Requires a Bad GAN
Good Semi-Supervised Learning that Requires a Bad GAN This is the code we used in our paper Good Semi-supervised Learning that Requires a Bad GAN Ziha
Class-Attentive Diffusion Network for Semi-Supervised Classification [AAAI'21] (official implementation)
Class-Attentive Diffusion Network for Semi-Supervised Classification Official Implementation of AAAI 2021 paper Class-Attentive Diffusion Network for
Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering
Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering
AISTATS 2019: Confidence-based Graph Convolutional Networks for Semi-Supervised Learning
Confidence-based Graph Convolutional Networks for Semi-Supervised Learning Source code for AISTATS 2019 paper: Confidence-based Graph Convolutional Ne
Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs
Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs MATLAB implementation of the paper: P. Mercado, F. Tudisco, and M. Hein,
Training neural models with structured signals.
Neural Structured Learning in TensorFlow Neural Structured Learning (NSL) is a new learning paradigm to train neural networks by leveraging structured
Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Learning with Nonignorable Nonresponses‘
Graph-based joint model with Nonignorable Missingness (GNM) This is a Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Lear
A Flexible Generative Framework for Graph-based Semi-supervised Learning (NeurIPS 2019)
G3NN This repo provides a pytorch implementation for the 4 instantiations of the flexible generative framework as described in the following paper: A
SemiNAS: Semi-Supervised Neural Architecture Search
SemiNAS: Semi-Supervised Neural Architecture Search This repository contains the code used for Semi-Supervised Neural Architecture Search, by Renqian
Meta Learning for Semi-Supervised Few-Shot Classification
few-shot-ssl-public Code for paper Meta-Learning for Semi-Supervised Few-Shot Classification. [arxiv] Dependencies cv2 numpy pandas python 2.7 / 3.5+
Code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data by Minimizing Predictive Variance
Semi-supervised Deep Kernel Learning This is the code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data
Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters.
Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters. Overview This project is a Torch implementation for our CVPR 2016 paper
Mixup for Supervision, Semi- and Self-Supervision Learning Toolbox and Benchmark
OpenSelfSup News Downstream tasks now support more methods(Mask RCNN-FPN, RetinaNet, Keypoints RCNN) and more datasets(Cityscapes). 'GaussianBlur' is
Contrastive Learning of Structured World Models
Contrastive Learning of Structured World Models This repository contains the official PyTorch implementation of: Contrastive Learning of Structured Wo
GCRC: A Gaokao Chinese Reading Comprehension dataset for interpretable Evaluation
GCRC GCRC: A New Challenging MRC Dataset from Gaokao Chinese for Explainable Eva
This repo tries to recognize faces in the dataset you created
YÜZ TANIMA SİSTEMİ Bu repo oluşturacağınız yüz verisetlerini tanımaya çalışan ma
Slice a single image into multiple pieces and create a dataset from them
OpenCV Image to Dataset Converter Slice a single image of Persian digits into mu
A project in order to analyze user's favorite musics, artists and genre
Spotify-Wrapped This is a project about Spotify Wrapped (which is an extra option for premium accounts, but you don't need to be premium here) This pr
Quickly download, clean up, and install public datasets into a database management system
Finding data is one thing. Getting it ready for analysis is another. Acquiring, cleaning, standardizing and importing publicly available data is time
N-Omniglot is a large neuromorphic few-shot learning dataset
N-Omniglot [Paper] || [Dataset] N-Omniglot is a large neuromorphic few-shot learning dataset. It reconstructs strokes of Omniglot as videos and uses D
An Official Repo of CVPR '20 "MSeg: A Composite Dataset for Multi-Domain Segmentation"
This is the code for the paper: MSeg: A Composite Dataset for Multi-domain Semantic Segmentation (CVPR 2020, Official Repo) [CVPR PDF] [Journal PDF] J
Official code for "InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization" (ICLR 2020, spotlight)
InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization Authors: Fan-yun Sun, Jordan Hoffm
Source code of the "Graph-Bert: Only Attention is Needed for Learning Graph Representations" paper
Graph-Bert Source code of "Graph-Bert: Only Attention is Needed for Learning Graph Representations". Please check the script.py as the entry point. We
Deeper insights into graph convolutional networks for semi-supervised learning
deeper_insights_into_GCNs Deeper insights into graph convolutional networks for semi-supervised learning References data and utils.py come from Implem
Self-Guided Contrastive Learning for BERT Sentence Representations
Self-Guided Contrastive Learning for BERT Sentence Representations This repository is dedicated for releasing the implementation of the models utilize
Unsupervised Learning of Video Representations using LSTMs
Unsupervised Learning of Video Representations using LSTMs Code for paper Unsupervised Learning of Video Representations using LSTMs by Nitish Srivast
Visualization of the World Religion Data dataset by Correlates of War Project.
World Religion Data Visualization Visualization of the World Religion Data dataset by Correlates of War Project. Mostly personal project to famirializ
TensorFlow implementation of "Attention is all you need (Transformer)"
[TensorFlow 2] Attention is all you need (Transformer) TensorFlow implementation of "Attention is all you need (Transformer)" Dataset The MNIST datase
whylogs: A Data and Machine Learning Logging Standard
whylogs: A Data and Machine Learning Logging Standard whylogs is an open source standard for data and ML logging whylogs logging agent is the easiest
Multilingual word vectors in 78 languages
Aligning the fastText vectors of 78 languages Facebook recently open-sourced word vectors in 89 languages. However these vectors are monolingual; mean
Medical-Image-Triage-and-Classification-System-Based-on-COVID-19-CT-and-X-ray-Scan-Dataset
Medical-Image-Triage-and-Classification-System-Based-on-COVID-19-CT-and-X-ray-Sc
Structured Exceptions for Python
XC: Structured exceptions for Python XC encourages a structured, disciplined approach to use of exceptions: it reduces the overhead of declaring excep
Hub is a dataset format with a simple API for creating, storing, and collaborating on AI datasets of any size.
Hub is a dataset format with a simple API for creating, storing, and collaborating on AI datasets of any size. The hub data layout enables rapid transformations and streaming of data while training models at scale. Hub is used by Google, Waymo, Red Cross, Oxford University, and Omdena.
Sequence lineage information extracted from RKI sequence data repo
Pango lineage information for German SARS-CoV-2 sequences This repository contains a join of the metadata and pango lineage tables of all German SARS-
Rule based classification A hotel s customers dataset
Rule-based-classification-A-hotel-s-customers-dataset- Aim: Categorize new customers by segment and predict how much revenue they can generate This re
Datasets with Softcatalà website content
softcatala-web-dataset This repository contains Sofcatalà web site content (articles and programs descriptions). Dataset are available in the dataset
A Pytorch loader for MVTecAD dataset.
MVTecAD A Pytorch loader for MVTecAD dataset. It strictly follows the code style of common Pytorch datasets, such as torchvision.datasets.CIFAR10. The
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh
This repo uses a stereo camera and gray-code-based structured light to realize dense 3D reconstruction.
Structured-light-stereo This repo uses a stereo camera and gray-code-based structured light to realize dense 3D reconstruction. . How to use: STEP 1:
Learning Domain Invariant Representations in Goal-conditioned Block MDPs
Learning Domain Invariant Representations in Goal-conditioned Block MDPs Beining Han, Chongyi Zheng, Harris Chan, Keiran Paster, Michael R. Zhang, Jim
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura
Turn any live video stream or locally stored video into a dataset of interesting samples for ML training, or any other type of analysis.
Sieve Video Data Collection Example Find samples that are interesting within hours of raw video, for free and completely automatically using Sieve API
Implementation of our paper "DMT: Dynamic Mutual Training for Semi-Supervised Learning"
DMT: Dynamic Mutual Training for Semi-Supervised Learning This repository contains the code for our paper DMT: Dynamic Mutual Training for Semi-Superv
Open source annotation tool for machine learning practitioners.
doccano doccano is an open source text annotation tool for humans. It provides annotation features for text classification, sequence labeling and sequ
ANTLR (ANother Tool for Language Recognition) is a powerful parser generator for reading, processing, executing, or translating structured text or binary files.
ANTLR (ANother Tool for Language Recognition) is a powerful parser generator for reading, processing, executing, or translating structured text or binary files.
Keras implementation of PersonLab for Multi-Person Pose Estimation and Instance Segmentation.
PersonLab This is a Keras implementation of PersonLab for Multi-Person Pose Estimation and Instance Segmentation. The model predicts heatmaps and vari
A 30000+ Chinese MRC dataset - Delta Reading Comprehension Dataset
Delta Reading Comprehension Dataset 台達閱讀理解資料集 Delta Reading Comprehension Dataset (DRCD) 屬於通用領域繁體中文機器閱讀理解資料集。 本資料集期望成為適用於遷移學習之標準中文閱讀理解資料集。 本資料集從2,108篇
Open clone of OpenAI's unreleased WebText dataset scraper.
Open clone of OpenAI's unreleased WebText dataset scraper. This version uses pushshift.io files instead of the API for speed.