134 Repositories
Python Sig-Wasserstein-GANs Libraries
Pytorch implementation of Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors
Make-A-Scene - PyTorch Pytorch implementation (inofficial) of Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors (https://arxiv.org/
Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data - Official PyTorch Implementation (CVPR 2022)
Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data (CVPR 2022) Potentials of primitive shapes f
PyTorch Implementation of DiffGAN-TTS: High-Fidelity and Efficient Text-to-Speech with Denoising Diffusion GANs
DiffGAN-TTS - PyTorch Implementation PyTorch implementation of DiffGAN-TTS: High
Implementations of the algorithms in the paper Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters
Implementations of the algorithms in the paper Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters
Generate Cartoon Images using Generative Adversarial Network
AvatarGAN ✨ Generate Cartoon Images using DC-GAN Deep Convolutional GAN is a generative adversarial network architecture. It uses a couple of guidelin
The 7th edition of NTIRE: New Trends in Image Restoration and Enhancement workshop will be held on June 2022 in conjunction with CVPR 2022.
NTIRE 2022 - Image Inpainting Challenge Important dates 2022.02.01: Release of train data (input and output images) and validation data (only input) 2
Optimal Transport Tools (OTT), A toolbox for all things Wasserstein.
Optimal Transport Tools (OTT), A toolbox for all things Wasserstein. See full documentation for detailed info on the toolbox. The goal of OTT is to pr
WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution
WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution This code belongs to the paper [1] available at https://arx
Explore the Expression: Facial Expression Generation using Auxiliary Classifier Generative Adversarial Network
Explore the Expression: Facial Expression Generation using Auxiliary Classifier Generative Adversarial Network This is the official implementation of
Spectral normalization (SN) is a widely-used technique for improving the stability and sample quality of Generative Adversarial Networks (GANs)
Why Spectral Normalization Stabilizes GANs: Analysis and Improvements [paper (NeurIPS 2021)] [paper (arXiv)] [code] Authors: Zinan Lin, Vyas Sekar, Gi
Collapse by Conditioning: Training Class-conditional GANs with Limited Data
Collapse by Conditioning: Training Class-conditional GANs with Limited Data Moha
GANfolk: Using AI to create portraits of fictional people to sell as NFTs
GANfolk are AI-generated renderings of fictional people. Each image in the collection was created by a pair of Generative Adversarial Networks (GANs) with names and backstories also created with AI. The GANs were trained using portraits from artists like Renoir, Turner, and Modigliani in addition to open-source, modern photos.
A curated list of the top 10 computer vision papers in 2021 with video demos, articles, code and paper reference.
The Top 10 Computer Vision Papers of 2021 The top 10 computer vision papers in 2021 with video demos, articles, code, and paper reference. While the w
Full body anonymization - Realistic Full-Body Anonymization with Surface-Guided GANs
Realistic Full-Body Anonymization with Surface-Guided GANs This is the official
🏖 Keras Implementation of Painting outside the box
Keras implementation of Image OutPainting This is an implementation of Painting Outside the Box: Image Outpainting paper from Standford University. So
Implementations of CNNs, RNNs, GANs, etc
Tensorflow Programs and Tutorials This repository will contain Tensorflow tutorials on a lot of the most popular deep learning concepts. It'll also co
CoMoGAN: continuous model-guided image-to-image translation. CVPR 2021 oral.
CoMoGAN: Continuous Model-guided Image-to-Image Translation Official repository. Paper CoMoGAN: continuous model-guided image-to-image translation [ar
Pytorch implementation for ACMMM2021 paper "I2V-GAN: Unpaired Infrared-to-Visible Video Translation".
I2V-GAN This repository is the official Pytorch implementation for ACMMM2021 paper "I2V-GAN: Unpaired Infrared-to-Visible Video Translation". Traffic
Contrastive unpaired image-to-image translation, faster and lighter training than cyclegan (ECCV 2020, in PyTorch)
Contrastive Unpaired Translation (CUT) video (1m) | video (10m) | website | paper We provide our PyTorch implementation of unpaired image-to-image tra
Diverse Image Generation via Self-Conditioned GANs
Diverse Image Generation via Self-Conditioned GANs Project | Paper Diverse Image Generation via Self-Conditioned GANs Steven Liu, Tongzhou Wang, David
[CVPR 2020] GAN Compression: Efficient Architectures for Interactive Conditional GANs
GAN Compression project | paper | videos | slides [NEW!] GAN Compression is accepted by T-PAMI! We released our T-PAMI version in the arXiv v4! [NEW!]
DAGAN - Dual Attention GANs for Semantic Image Synthesis
Contents Semantic Image Synthesis with DAGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evalu
Ganilla - Official Pytorch implementation of GANILLA
GANILLA We provide PyTorch implementation for: GANILLA: Generative Adversarial Networks for Image to Illustration Translation. Paper Arxiv Updates (Fe
Net2net - Network-to-Network Translation with Conditional Invertible Neural Networks
Net2Net Code accompanying the NeurIPS 2020 oral paper Network-to-Network Translation with Conditional Invertible Neural Networks Robin Rombach*, Patri
DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs
DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs Abstract: Image-to-image translation has recently achieved re
Adversarial Self-Defense for Cycle-Consistent GANs
Adversarial Self-Defense for Cycle-Consistent GANs This is the official implementation of the CycleGAN robust to self-adversarial attacks used in pape
Official PyTorch implementation of GDWCT (CVPR 2019, oral)
This repository provides the official code of GDWCT, and it is written in PyTorch. Paper Image-to-Image Translation via Group-wise Deep Whitening-and-
Masked regression code - Masked Regression
Masked Regression MR - Python Implementation This repositery provides a python implementation of MR (Masked Regression). MR can efficiently synthesize
Pytorch implemenation of Stochastic Multi-Label Image-to-image Translation (SMIT)
SMIT: Stochastic Multi-Label Image-to-image Translation This repository provides a PyTorch implementation of SMIT. SMIT can stochastically translate a
[ACM MM 2019 Oral] Cycle In Cycle Generative Adversarial Networks for Keypoint-Guided Image Generation
Contents Cycle-In-Cycle GANs Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Acknowledgments Relat
AttentionGAN for Unpaired Image-to-Image Translation & Multi-Domain Image-to-Image Translation
AttentionGAN-v2 for Unpaired Image-to-Image Translation AttentionGAN-v2 Framework The proposed generator learns both foreground and background attenti
Gans-in-action - Companion repository to GANs in Action: Deep learning with Generative Adversarial Networks
GANs in Action by Jakub Langr and Vladimir Bok List of available code: Chapter 2: Colab, Notebook Chapter 3: Notebook Chapter 4: Notebook Chapter 6: C
Tensorflow implementation for "Improved Transformer for High-Resolution GANs" (NeurIPS 2021).
HiT-GAN Official TensorFlow Implementation HiT-GAN presents a Transformer-based generator that is trained based on Generative Adversarial Networks (GA
A set of tests for evaluating large-scale algorithms for Wasserstein-2 transport maps computation.
Continuous Wasserstein-2 Benchmark This is the official Python implementation of the NeurIPS 2021 paper Do Neural Optimal Transport Solvers Work? A Co
Official PyTorch repo for JoJoGAN: One Shot Face Stylization
JoJoGAN: One Shot Face Stylization This is the PyTorch implementation of JoJoGAN: One Shot Face Stylization. Abstract: While there have been recent ad
StyleSwin: Transformer-based GAN for High-resolution Image Generation
StyleSwin This repo is the official implementation of "StyleSwin: Transformer-based GAN for High-resolution Image Generation". By Bowen Zhang, Shuyang
[CVPR 2019 Oral] Multi-Channel Attention Selection GAN with Cascaded Semantic Guidance for Cross-View Image Translation
SelectionGAN for Guided Image-to-Image Translation CVPR Paper | Extended Paper | Guided-I2I-Translation-Papers Citation If you use this code for your
Ensembling Off-the-shelf Models for GAN Training
Vision-aided GAN video (3m) | website | paper Can the collective knowledge from a large bank of pretrained vision models be leveraged to improve GAN t
Ensembling Off-the-shelf Models for GAN Training
Data-Efficient GANs with DiffAugment project | paper | datasets | video | slides Generated using only 100 images of Obama, grumpy cats, pandas, the Br
GANformer: Generative Adversarial Transformers
GANformer: Generative Adversarial Transformers Drew A. Hudson* & C. Lawrence Zitnick Update: We released the new GANformer2 paper! *I wish to thank Ch
Implementation of our recent paper, WOOD: Wasserstein-based Out-of-Distribution Detection.
WOOD Implementation of our recent paper, WOOD: Wasserstein-based Out-of-Distribution Detection. Abstract The training and test data for deep-neural-ne
Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
Watch faces morph into each other with StyleGAN 2, StyleGAN, and DCGAN!
FaceMorpher FaceMorpher is an innovative project to get a unique face morph (or interpolation for geeks) on a website. Yes, this means you can see fac
Synthetic Data Generation for tabular, relational and time series data.
An Open Source Project from the Data to AI Lab, at MIT Website: https://sdv.dev Documentation: https://sdv.dev/SDV User Guides Developer Guides Github
This enforces signatures for CVE-2021-44228 across all policies on a BIG-IP ASM device
f5-waf-enforce-sigs-CVE-2021-44228 This enforces signatures for CVE-2021-44228 across all policies on a BIG-IP ASM device Overview This script enforce
Bounding Wasserstein distance with couplings
BoundWasserstein These scripts reproduce the results of the article Bounding Wasserstein distance with couplings by Niloy Biswas and Lester Mackey. ar
PyTorch implementation for OCT-GAN Neural ODE-based Conditional Tabular GANs (WWW 2021)
OCT-GAN: Neural ODE-based Conditional Tabular GANs (OCT-GAN) Code for reproducing the experiments in the paper: Jayoung Kim*, Jinsung Jeon*, Jaehoon L
[NeurIPS 2021] Low-Rank Subspaces in GANs
Low-Rank Subspaces in GANs Figure: Image editing results using LowRankGAN on StyleGAN2 (first three columns) and BigGAN (last column). Low-Rank Subspa
[NeurIPS2021] Code Release of Learning Transferable Perturbations
Learning Transferable Adversarial Perturbations This is an official release of the paper Learning Transferable Adversarial Perturbations. The code is
Implementation of Pooling by Sliced-Wasserstein Embedding (NeurIPS 2021)
PSWE: Pooling by Sliced-Wasserstein Embedding (NeurIPS 2021) PSWE is a permutation-invariant feature aggregation/pooling method based on sliced-Wasser
DCGAN LSGAN WGAN-GP DRAGAN PyTorch
Recommendation Our GAN based work for facial attribute editing - AttGAN. News 8 April 2019: We re-implement these GANs by Tensorflow 2! The old versio
[NeurIPS'21] Projected GANs Converge Faster
[Project] [PDF] [Supplementary] [Talk] This repository contains the code for our NeurIPS 2021 paper "Projected GANs Converge Faster" by Axel Sauer, Ka
The first GANs-based omics-to-omics translation framework
OmiTrans Please also have a look at our multi-omics multi-task DL freamwork 👀 : OmiEmbed The FIRST GANs-based omics-to-omics translation framework Xi
Tooling for GANs in TensorFlow
TensorFlow-GAN (TF-GAN) TF-GAN is a lightweight library for training and evaluating Generative Adversarial Networks (GANs). Can be installed with pip
The FIRST GANs-based omics-to-omics translation framework
OmiTrans Please also have a look at our multi-omics multi-task DL freamwork 👀 : OmiEmbed The FIRST GANs-based omics-to-omics translation framework Xi
Official pytorch code for SSC-GAN: Semi-Supervised Single-Stage Controllable GANs for Conditional Fine-Grained Image Generation(ICCV 2021)
SSC-GAN_repo Pytorch implementation for 'Semi-Supervised Single-Stage Controllable GANs for Conditional Fine-Grained Image Generation'.PDF SSC-GAN:Sem
Code to reproduce the results in the paper "Tensor Component Analysis for Interpreting the Latent Space of GANs".
Tensor Component Analysis for Interpreting the Latent Space of GANs [ paper | project page ] Code to reproduce the results in the paper "Tensor Compon
A denoising autoencoder + adversarial losses and attention mechanisms for face swapping.
faceswap-GAN Adding Adversarial loss and perceptual loss (VGGface) to deepfakes'(reddit user) auto-encoder architecture. Updates Date Update 2018-08-2
GAN JAX - A toy project to generate images from GANs with JAX
GAN JAX - A toy project to generate images from GANs with JAX This project aims to bring the power of JAX, a Python framework developped by Google and
PyTorch implementation of our ICCV 2021 paper Intrinsic-Extrinsic Preserved GANs for Unsupervised 3D Pose Transfer.
Unsupervised_IEPGAN This is the PyTorch implementation of our ICCV 2021 paper Intrinsic-Extrinsic Preserved GANs for Unsupervised 3D Pose Transfer. Ha
Code for training and evaluation of the model from "Language Generation with Recurrent Generative Adversarial Networks without Pre-training"
Language Generation with Recurrent Generative Adversarial Networks without Pre-training Code for training and evaluation of the model from "Language G
Toward Multimodal Image-to-Image Translation
BicycleGAN Project Page | Paper | Video Pytorch implementation for multimodal image-to-image translation. For example, given the same night image, our
AttGAN: Facial Attribute Editing by Only Changing What You Want (IEEE TIP 2019)
News 11 Jan 2020: We clean up the code to make it more readable! The old version is here: v1. AttGAN TIP Nov. 2019, arXiv Nov. 2017 TensorFlow impleme
🔥3D-RecGAN in Tensorflow (ICCV Workshops 2017)
3D Object Reconstruction from a Single Depth View with Adversarial Learning Bo Yang, Hongkai Wen, Sen Wang, Ronald Clark, Andrew Markham, Niki Trigoni
Torch implementation of various types of GAN (e.g. DCGAN, ALI, Context-encoder, DiscoGAN, CycleGAN, EBGAN, LSGAN)
gans-collection.torch Torch implementation of various types of GANs (e.g. DCGAN, ALI, Context-encoder, DiscoGAN, CycleGAN, EBGAN). Note that EBGAN and
How to Train a GAN? Tips and tricks to make GANs work
(this list is no longer maintained, and I am not sure how relevant it is in 2020) How to Train a GAN? Tips and tricks to make GANs work While research
Progressive Growing of GANs for Improved Quality, Stability, and Variation
Progressive Growing of GANs for Improved Quality, Stability, and Variation — Official TensorFlow implementation of the ICLR 2018 paper Tero Karras (NV
[CVPR 2016] Unsupervised Feature Learning by Image Inpainting using GANs
Context Encoders: Feature Learning by Inpainting CVPR 2016 [Project Website] [Imagenet Results] Sample results on held-out images: This is the trainin
Software that can generate photos from paintings, turn horses into zebras, perform style transfer, and more.
CycleGAN PyTorch | project page | paper Torch implementation for learning an image-to-image translation (i.e. pix2pix) without input-output pairs, for
Invertible conditional GANs for image editing
Invertible Conditional GANs This is the implementation of the IcGAN model proposed in our paper: Invertible Conditional GANs for image editing. Novemb
A simple interface for editing natural photos with generative neural networks.
Neural Photo Editor A simple interface for editing natural photos with generative neural networks. This repository contains code for the paper "Neural
[SIGGRAPH Asia 2019] Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning
AGIS-Net Introduction This is the official PyTorch implementation of the Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning. paper | suppl
Code for the paper "Improved Techniques for Training GANs"
Status: Archive (code is provided as-is, no updates expected) improved-gan code for the paper "Improved Techniques for Training GANs" MNIST, SVHN, CIF
A list of all named GANs!
The GAN Zoo Every week, new GAN papers are coming out and it's hard to keep track of them all, not to mention the incredibly creative ways in which re
Sketch Your Own GAN: Customizing a GAN model with hand-drawn sketches.
Sketch Your Own GAN Project | Paper | Youtube | Slides Our method takes in one or a few hand-drawn sketches and customizes an off-the-shelf GAN to mat
Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images"
GANInversion_with_ConsecutiveImgs Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images" https://a
The authors' official PyTorch SigWGAN implementation
The authors' official PyTorch SigWGAN implementation This repository is the official implementation of [Sig-Wasserstein GANs for Time Series Generatio
Generative Adversarial Networks(GANs)
Generative Adversarial Networks(GANs) Vanilla GAN ClusterGAN Vanilla GAN Model Structure Final Generator Structure A MLP with 2 hidden layers of hidde
LAMDA: Label Matching Deep Domain Adaptation
LAMDA: Label Matching Deep Domain Adaptation This is the implementation of the paper LAMDA: Label Matching Deep Domain Adaptation which has been accep
Building blocks for uncertainty-aware cycle consistency presented at NeurIPS'21.
UncertaintyAwareCycleConsistency This repository provides the building blocks and the API for the work presented in the NeurIPS'21 paper Robustness vi
This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices.
GBW This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices. Ap
This repository contains all source code, pre-trained models related to the paper "An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator"
An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator This is a Pytorch implementation for the paper "An Empirical Study o
InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing
InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA
Pytorch implementation of MixNMatch
MixNMatch: Multifactor Disentanglement and Encoding for Conditional Image Generation [Paper] Yuheng Li, Krishna Kumar Singh, Utkarsh Ojha, Yong Jae Le
Building blocks for uncertainty-aware cycle consistency presented at NeurIPS'21.
UncertaintyAwareCycleConsistency This repository provides the building blocks and the API for the work presented in the NeurIPS'21 paper Robustness vi
Implementation of the paper "Generating Symbolic Reasoning Problems with Transformer GANs"
Generating Symbolic Reasoning Problems with Transformer GANs This is the implementation of the paper Generating Symbolic Reasoning Problems with Trans
3D-aware GANs based on NeRF (arXiv).
CIPS-3D This repository will contain the code of the paper, CIPS-3D: A 3D-Aware Generator of GANs Based on Conditionally-Independent Pixel Synthesis.
An implementation of the [Hierarchical (Sig-Wasserstein) GAN] algorithm for large dimensional Time Series Generation
Hierarchical GAN for large dimensional financial market data Implementation This repository is an implementation of the [Hierarchical (Sig-Wasserstein
Code for reproducing experiments in "Improved Training of Wasserstein GANs"
Improved Training of Wasserstein GANs Code for reproducing experiments in "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, Tensor
Dynamical Wasserstein Barycenters for Time Series Modeling
Dynamical Wasserstein Barycenters for Time Series Modeling This is the code related for the Dynamical Wasserstein Barycenter model published in Neurip
PyTorch code accompanying our paper on Maximum Entropy Generators for Energy-Based Models
Maximum Entropy Generators for Energy-Based Models All experiments have tensorboard visualizations for samples / density / train curves etc. To run th
A scalable template for PyTorch projects, with examples in Image Segmentation, Object classification, GANs and Reinforcement Learning.
PyTorch Project Template is being sponsored by the following tool; please help to support us by taking a look and signing up to a free trial PyTorch P
Code for paper "Which Training Methods for GANs do actually Converge? (ICML 2018)"
GAN stability This repository contains the experiments in the supplementary material for the paper Which Training Methods for GANs do actually Converg
Image-to-Image Translation in PyTorch
CycleGAN and pix2pix in PyTorch New: Please check out contrastive-unpaired-translation (CUT), our new unpaired image-to-image translation model that e
Code accompanying the paper "Wasserstein GAN"
Wasserstein GAN Code accompanying the paper "Wasserstein GAN" A few notes The first time running on the LSUN dataset it can take a long time (up to an
Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images"
GANInversion_with_ConsecutiveImgs Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images" https://a
This is the accompanying toolbox for the paper "A Survey on GANs for Anomaly Detection"
Anomaly detection using GANs.
Codebase for Diffusion Models Beat GANS on Image Synthesis.
Codebase for Diffusion Models Beat GANS on Image Synthesis.
This repo is to be freely used by ML devs to check the GAN performances without coding from scratch.
GANs for Fun Created because I can! GOAL The goal of this repo is to be freely used by ML devs to check the GAN performances without coding from scrat
A pytorch implementation of Paper "Improved Training of Wasserstein GANs"
WGAN-GP An pytorch implementation of Paper "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, SciPy, Matplotlib A recent NVIDIA GPU