63 Repositories
Python approximate-nearest-neighbors Libraries
Implementation of Memorizing Transformers (ICLR 2022), attention net augmented with indexing and retrieval of memories using approximate nearest neighbors, in Pytorch
Memorizing Transformers - Pytorch Implementation of Memorizing Transformers (ICLR 2022), attention net augmented with indexing and retrieval of memori
CVPR2022 (Oral) - Rethinking Semantic Segmentation: A Prototype View
Rethinking Semantic Segmentation: A Prototype View Rethinking Semantic Segmentation: A Prototype View, Tianfei Zhou, Wenguan Wang, Ender Konukoglu and
Get started with Machine Learning with Python - An introduction with Python programming examples
Machine Learning With Python Get started with Machine Learning with Python An engaging introduction to Machine Learning with Python TL;DR Download all
Framework for evaluating ANNS algorithms on billion scale datasets.
Billion-Scale ANN http://big-ann-benchmarks.com/ Install The only prerequisite is Python (tested with 3.6) and Docker. Works with newer versions of Py
Code for "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" paper
UNICORN 🦄 Webpage | Paper | BibTex PyTorch implementation of "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" pap
Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences
Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences This repository is an official PyTorch implementation of Neighbor
Python project that aims to discover CDP neighbors and map their Layer-2 topology within a shareable medium like Visio or Draw.io.
Python project that aims to discover CDP neighbors and map their Layer-2 topology within a shareable medium like Visio or Draw.io.
HEAM: High-Efficiency Approximate Multiplier Optimization for Deep Neural Networks
Approximate Multiplier by HEAM What's HEAM? HEAM is a general optimization method to generate high-efficiency approximate multipliers for specific app
Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem
Benchmarking nearest neighbors Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem, but so far t
GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors
GPU implementation of kNN and SNN GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors Supported by numba cuda and faiss library E
Neighbourhood Retrieval (Nearest Neighbours) with Distance Correlation.
Neighbourhood Retrieval with Distance Correlation Assign Pseudo class labels to datapoints in the latent space. NNDC is a slim wrapper around FAISS. N
Tree-based Search Graph for Approximate Nearest Neighbor Search
TBSG: Tree-based Search Graph for Approximate Nearest Neighbor Search. TBSG is a graph-based algorithm for ANNS based on Cover Tree, which is also an
Python Machine Learning Jupyter Notebooks (ML website)
Python Machine Learning Jupyter Notebooks (ML website) Dr. Tirthajyoti Sarkar, Fremont, California (Please feel free to connect on LinkedIn here) Also
This is my implementation on the K-nearest neighbors algorithm from scratch using Python
K Nearest Neighbors (KNN) algorithm In this Machine Learning world, there are various algorithms designed for classification problems such as Logistic
Pytorch implementations of Bayes By Backprop, MC Dropout, SGLD, the Local Reparametrization Trick, KF-Laplace, SG-HMC and more
Bayesian Neural Networks Pytorch implementations for the following approximate inference methods: Bayes by Backprop Bayes by Backprop + Local Reparame
Personal implementation of paper "Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval"
Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval This repo provides personal implementation of paper Approximate Ne
A Python library for common tasks on 3D point clouds
Point Cloud Utils (pcu) - A Python library for common tasks on 3D point clouds Point Cloud Utils (pcu) is a utility library providing the following fu
whylogs: A Data and Machine Learning Logging Standard
whylogs: A Data and Machine Learning Logging Standard whylogs is an open source standard for data and ML logging whylogs logging agent is the easiest
A basic duplicate image detection service using perceptual image hash functions and nearest neighbor search, implemented using faiss, fastapi, and imagehash
Duplicate Image Detection Getting Started Install dependencies pip install -r requirements.txt Run service python main.py Testing Test with pytest How
Implementation of K-Nearest Neighbors Algorithm Using PySpark
KNN With Spark Implementation of KNN using PySpark. The KNN was used on two separate datasets (https://archive.ics.uci.edu/ml/datasets/iris and https:
Here is some Python code that allows you to read in SVG files and approximate their paths using a Fourier series.
Here is some Python code that allows you to read in SVG files and approximate their paths using a Fourier series. The Fourier series can be animated and visualized, the function can be output as a two dimensional vector for Desmos and there is a method to output the coefficients as LaTeX code.
Convert Table data to approximate values with GUI
Table_Editor Convert Table data to approximate values with GUIs... usage - Import methods for extension Tables. Imported method supposed to have only
Fastshap: A fast, approximate shap kernel
fastshap: A fast, approximate shap kernel fastshap was designed to be: Fast Calculating shap values can take an extremely long time. fastshap utilizes
Rethinking Nearest Neighbors for Visual Classification
Rethinking Nearest Neighbors for Visual Classification arXiv Environment settings Check out scripts/env_setup.sh Setup data Download the following fin
Weighted K Nearest Neighbors (kNN) algorithm implemented on python from scratch.
kNN_From_Scratch I implemented the k nearest neighbors (kNN) classification algorithm on python. This algorithm is used to predict the classes of new
Official Code for "Constrained Mean Shift Using Distant Yet Related Neighbors for Representation Learning"
CMSF Official Code for "Constrained Mean Shift Using Distant Yet Related Neighbors for Representation Learning" Requirements Python = 3.7.6 PyTorch
SPTAG: A library for fast approximate nearest neighbor search
SPTAG: A library for fast approximate nearest neighbor search SPTAG SPTAG (Space Partition Tree And Graph) is a library for large scale vector approxi
K-Nearest Neighbor in Pytorch
Pytorch KNN CUDA 2019/11/02 This repository will no longer be maintained as pytorch supports sort() and kthvalue on tensors. git clone https://github.
PyNNDescent is a Python nearest neighbor descent for approximate nearest neighbors.
PyNNDescent PyNNDescent is a Python nearest neighbor descent for approximate nearest neighbors. It provides a python implementation of Nearest Neighbo
Approximate Nearest Neighbor Search for Sparse Data in Python!
Approximate Nearest Neighbor Search for Sparse Data in Python! This library is well suited to finding nearest neighbors in sparse, high dimensional spaces (like text documents).
Optimal space decomposition based-product quantization for approximate nearest neighbor search
Optimal space decomposition based-product quantization for approximate nearest neighbor search Abstract Product quantization(PQ) is an effective neare
Code for paper entitled "Improving Novelty Detection using the Reconstructions of Nearest Neighbours"
NLN: Nearest-Latent-Neighbours A repository containing the implementation of the paper entitled Improving Novelty Detection using the Reconstructions
A collection of differentiable SVD methods and also the official implementation of the ICCV21 paper "Why Approximate Matrix Square Root Outperforms Accurate SVD in Global Covariance Pooling?"
Differentiable SVD Introduction This repository contains: The official Pytorch implementation of ICCV21 paper Why Approximate Matrix Square Root Outpe
Bayes-Newton—A Gaussian process library in JAX, with a unifying view of approximate Bayesian inference as variants of Newton's algorithm.
Bayes-Newton Bayes-Newton is a library for approximate inference in Gaussian processes (GPs) in JAX (with objax), built and actively maintained by Wil
Code for approximate graph reduction techniques for cardinality-based DSFM, from paper
SparseCard Code for approximate graph reduction techniques for cardinality-based DSFM, from paper "Approximate Decomposable Submodular Function Minimi
My project contrasts K-Nearest Neighbors and Random Forrest Regressors on Real World data
kNN-vs-RFR My project contrasts K-Nearest Neighbors and Random Forrest Regressors on Real World data In many areas, rental bikes have been launched to
Code for the Weighted, Accelerated and Restarted Primal-dual algorithm. This algorithm achieves stable linear convergence for reconstruction from undersampled noisy measurements under an approximate sharpness condition. See the paper for details.
WARPd Code for the Weighted, Accelerated and Restarted Primal-dual algorithm. This algorithm achieves stable linear convergence for reconstruction fro
A new mini-batch framework for optimal transport in deep generative models, deep domain adaptation, approximate Bayesian computation, color transfer, and gradient flow.
BoMb-OT Python3 implementation of the papers On Transportation of Mini-batches: A Hierarchical Approach and Improving Mini-batch Optimal Transport via
Speeding-Up Back-Propagation in DNN: Approximate Outer Product with Memory
Approximate Outer Product Gradient Descent with Memory Code for the numerical experiment of the paper Speeding-Up Back-Propagation in DNN: Approximate
A raw implementation of the nearest insertion algorithm to resolve TSP problems in a TXT format.
TSP-Nearest-Insertion A raw implementation of the nearest insertion algorithm to resolve TSP problems in a TXT format. Instructions Load a txt file wi
ADOP: Approximate Differentiable One-Pixel Point Rendering
ADOP: Approximate Differentiable One-Pixel Point Rendering Abstract: We present a novel point-based, differentiable neural rendering pipeline for scen
A framework for building (and incrementally growing) graph-based data structures used in hierarchical or DAG-structured clustering and nearest neighbor search
A framework for building (and incrementally growing) graph-based data structures used in hierarchical or DAG-structured clustering and nearest neighbor search
Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)
Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)
TensorFlow Similarity is a python package focused on making similarity learning quick and easy.
TensorFlow Similarity is a python package focused on making similarity learning quick and easy.
Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning
structshot Code and data for paper "Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning", Yi Yang and Arz
ANNchor is a python library which constructs approximate k-nearest neighbour graphs for slow metrics.
Fast k-NN graph construction for slow metrics
emoji-math computes the given python expression and returns either the value or the nearest 5 emojis as measured by cosine similarity.
emoji-math computes the given python expression and returns either the value or the nearest 5 emojis as measured by cosine similarity.
Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN
Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN If you use this code for your research, please cite ou
A gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor.
OpenHands OpenHands is a gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor. Currently the system can iden
TorchPQ is a python library for Approximate Nearest Neighbor Search (ANNS) and Maximum Inner Product Search (MIPS) on GPU using Product Quantization (PQ) algorithm.
Efficient implementations of Product Quantization and its variants using Pytorch and CUDA
Newt - a Gaussian process library in JAX.
Newt __ \/_ (' \`\ _\, \ \\/ /`\/\ \\ \ \\
Elliot is a comprehensive recommendation framework that analyzes the recommendation problem from the researcher's perspective.
Comprehensive and Rigorous Framework for Reproducible Recommender Systems Evaluation
Using approximate bayesian posteriors in deep nets for active learning
Bayesian Active Learning (BaaL) BaaL is an active learning library developed at ElementAI. This repository contains techniques and reusable components
mlpack: a scalable C++ machine learning library --
a fast, flexible machine learning library Home | Documentation | Doxygen | Community | Help | IRC Chat Download: current stable version (3.4.2) mlpack
The first machine learning framework that encourages learning ML concepts instead of memorizing class functions.
SeaLion is designed to teach today's aspiring ml-engineers the popular machine learning concepts of today in a way that gives both intuition and ways of application. We do this through concise algorithms that do the job in the least jargon possible and examples to guide you through every step of the way.
🎐 a python library for doing approximate and phonetic matching of strings.
jellyfish Jellyfish is a python library for doing approximate and phonetic matching of strings. Written by James Turk [email protected] and Michael
🎐 a python library for doing approximate and phonetic matching of strings.
jellyfish Jellyfish is a python library for doing approximate and phonetic matching of strings. Written by James Turk [email protected] and Michael
mlpack: a scalable C++ machine learning library --
a fast, flexible machine learning library Home | Documentation | Doxygen | Community | Help | IRC Chat Download: current stable version (3.4.2) mlpack
Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk
Annoy Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given quer
🎐 a python library for doing approximate and phonetic matching of strings.
jellyfish Jellyfish is a python library for doing approximate and phonetic matching of strings. Written by James Turk [email protected] and Michael
Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk
Annoy Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given quer
python-timbl, originally developed by Sander Canisius, is a Python extension module wrapping the full TiMBL C++ programming interface. With this module, all functionality exposed through the C++ interface is also available to Python scripts. Being able to access the API from Python greatly facilitates prototyping TiMBL-based applications.
README: python-timbl Authors: Sander Canisius, Maarten van Gompel Contact: [email protected] Web site: https://github.com/proycon/python-timbl/ pytho
pyhsmm - library for approximate unsupervised inference in Bayesian Hidden Markov Models (HMMs) and explicit-duration Hidden semi-Markov Models (HSMMs), focusing on the Bayesian Nonparametric extensions, the HDP-HMM and HDP-HSMM, mostly with weak-limit approximations.
Bayesian inference in HSMMs and HMMs This is a Python library for approximate unsupervised inference in Bayesian Hidden Markov Models (HMMs) and expli