446 Repositories
Python bayesian-optimization Libraries
Safe Policy Optimization with Local Features
Safe Policy Optimization with Local Feature (SPO-LF) This is the source-code for implementing the algorithms in the paper "Safe Policy Optimization wi
Safe Policy Optimization with Local Features
Safe Policy Optimization with Local Feature (SPO-LF) This is the source-code for implementing the algorithms in the paper "Safe Policy Optimization wi
Neural Scene Flow Prior (NeurIPS 2021 spotlight)
Neural Scene Flow Prior Xueqian Li, Jhony Kaesemodel Pontes, Simon Lucey Will appear on Thirty-fifth Conference on Neural Information Processing Syste
Tools for Optuna, MLflow and the integration of both.
HPOflow - Sphinx DOC Tools for Optuna, MLflow and the integration of both. Detailed documentation with examples can be found here: Sphinx DOC Table of
Recursive Bayesian Networks
Recursive Bayesian Networks This repository contains the code to reproduce the results from the NeurIPS 2021 paper Lieck R, Rohrmeier M (2021) Recursi
Codes for CVPR2021 paper "PWCLO-Net: Deep LiDAR Odometry in 3D Point Clouds Using Hierarchical Embedding Mask Optimization"
PWCLO-Net: Deep LiDAR Odometry in 3D Point Clouds Using Hierarchical Embedding Mask Optimization (CVPR 2021) This is the official implementation of PW
Experiments and code to generate the GINC small-scale in-context learning dataset from "An Explanation for In-context Learning as Implicit Bayesian Inference"
GINC small-scale in-context learning dataset GINC (Generative In-Context learning Dataset) is a small-scale synthetic dataset for studying in-context
Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.
causal-bald | Abstract | Installation | Example | Citation | Reproducing Results DUE An implementation of the methods presented in Causal-BALD: Deep B
2021-AIAC-QQ-Browser-Hyperparameter-Optimization-Rank6
2021-AIAC-QQ-Browser-Hyperparameter-Optimization-Rank6
A Lightweight Hyperparameter Optimization Tool 🚀
Lightweight Hyperparameter Optimization 🚀 The mle-hyperopt package provides a simple and intuitive API for hyperparameter optimization of your Machin
Source code for deep symbolic optimization.
Update July 10, 2021: This repository now supports an additional symbolic optimization task: learning symbolic policies for reinforcement learning. Th
Generalized Proximal Policy Optimization with Sample Reuse (GePPO)
Generalized Proximal Policy Optimization with Sample Reuse This repository is the official implementation of the reinforcement learning algorithm Gene
Generalized and Efficient Blackbox Optimization System.
OpenBox Doc | OpenBox中文文档 OpenBox: Generalized and Efficient Blackbox Optimization System OpenBox is an efficient and generalized blackbox optimizatio
Framework for estimating the structures and parameters of Bayesian networks (DAGs) at per-sample resolution
Sample-specific Bayesian Networks A framework for estimating the structures and parameters of Bayesian networks (DAGs) at per-sample or per-patient re
Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces
This repository contains source code for the paper Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces a
Bayes-Newton—A Gaussian process library in JAX, with a unifying view of approximate Bayesian inference as variants of Newton's algorithm.
Bayes-Newton Bayes-Newton is a library for approximate inference in Gaussian processes (GPs) in JAX (with objax), built and actively maintained by Wil
This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroimaging" that has been accepted to NeurIPS 2021.
Dugh-NeurIPS-2021 This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroi
Bayesian Optimization Library for Medical Image Segmentation.
bayesmedaug: Bayesian Optimization Library for Medical Image Segmentation. bayesmedaug optimizes your data augmentation hyperparameters for medical im
Code for "Adversarial Attack Generation Empowered by Min-Max Optimization", NeurIPS 2021
Min-Max Adversarial Attacks [Paper] [arXiv] [Video] [Slide] Adversarial Attack Generation Empowered by Min-Max Optimization Jingkang Wang, Tianyun Zha
This project is based on our SIGGRAPH 2021 paper, ROSEFusion: Random Optimization for Online DenSE Reconstruction under Fast Camera Motion .
ROSEFusion 🌹 This project is based on our SIGGRAPH 2021 paper, ROSEFusion: Random Optimization for Online DenSE Reconstruction under Fast Camera Moti
Implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Graphs".
PPO-BiHyb This is the official implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Grap
🔥 Real-time Super Resolution enhancement (4x) with content loss and relativistic adversarial optimization 🔥
🔥 Real-time Super Resolution enhancement (4x) with content loss and relativistic adversarial optimization 🔥
[NeurIPS 2021] Official implementation of paper "Learning to Simulate Self-driven Particles System with Coordinated Policy Optimization".
Code for Coordinated Policy Optimization Webpage | Code | Paper | Talk (English) | Talk (Chinese) Hi there! This is the source code of the paper “Lear
This repo is the official implementation of "L2ight: Enabling On-Chip Learning for Optical Neural Networks via Efficient in-situ Subspace Optimization".
L2ight is a closed-loop ONN on-chip learning framework to enable scalable ONN mapping and efficient in-situ learning. L2ight adopts a three-stage learning flow that first calibrates the complicated photonic circuit states under challenging physical constraints, then performs photonic core mapping via combined analytical solving and zeroth-order optimization.
With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function
With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function. At the moment, only TensorFlow sequential models are supported. Interfaces to either the Pyomo or Gurobi modeling environments are offered.
ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees
ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees This repository is the official implementation of the empirica
Implementation of several Bayesian multi-target tracking algorithms, including Poisson multi-Bernoulli mixture filters for sets of targets and sets of trajectories. The repository also includes the GOSPA metric and a metric for sets of trajectories to evaluate performance.
This repository contains the Matlab implementations for the following multi-target filtering/tracking algorithms: - Folder PMBM contains the implemen
Dynamica causal Bayesian optimisation
Dynamic Causal Bayesian Optimization This is a Python implementation of Dynamic Causal Bayesian Optimization as presented at NeurIPS 2021. Abstract Th
RoMA: Robust Model Adaptation for Offline Model-based Optimization
RoMA: Robust Model Adaptation for Offline Model-based Optimization Implementation of RoMA: Robust Model Adaptation for Offline Model-based Optimizatio
An implementation of the proximal policy optimization algorithm
PPO Pytorch C++ This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment t
PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR) and Generative Adversarial Imitation Learning (GAIL).
PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR) and Generative Adversarial Imitation Learning (GAIL).
Classifies galaxy morphology with Bayesian CNN
Zoobot Zoobot classifies galaxy morphology with deep learning. This code will let you: Reproduce and improve the Galaxy Zoo DECaLS automated classific
Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks
Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks This is the master thesi
Trajectory optimization package for Mini-Pupper robot
Trajectory optimization package for Mini-Pupper robot Purpose of this repository is to provide low-torque and low-impact trajectory for Mini-Pupper qu
Bayesian optimisation library developped by Huawei Noah's Ark Library
Bayesian Optimisation Research This directory contains official implementations for Bayesian optimisation works developped by Huawei R&D, Noah's Ark L
A Lightweight Hyperparameter Optimization Tool 🚀
The mle-hyperopt package provides a simple and intuitive API for hyperparameter optimization of your Machine Learning Experiment (MLE) pipeline.
Tools for investing in Python
InvestOps Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction This is a Python package with simple and effective
OpenNeoMC:an Open-source Tool for Particle Transport Optimization that Combining OpenMC with NEORL
OpenNeoMC:an Open-source Tool for Particle Transport Optimization that Combining OpenMC with NEORL OpenMC is a community-developed Monte Carlo neutron
A lightweight Python-based 3D network multi-agent simulator. Uses a cell-based congestion model. Calculates risk, loudness and battery capacities of the agents. Suitable for 3D network optimization tasks.
AMAZ3DSim AMAZ3DSim is a lightweight python-based 3D network multi-agent simulator. It uses a cell-based congestion model. It calculates risk, battery
NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs.
NAS-HPO-Bench-II API Overview NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs. It helps a fair and low-
Bayesian Meta-Learning Through Variational Gaussian Processes
vmgp This is the repository of Vivek Myers and Nikhil Sardana for our CS 330 final project, Bayesian Meta-Learning Through Variational Gaussian Proces
A new mini-batch framework for optimal transport in deep generative models, deep domain adaptation, approximate Bayesian computation, color transfer, and gradient flow.
BoMb-OT Python3 implementation of the papers On Transportation of Mini-batches: A Hierarchical Approach and Improving Mini-batch Optimal Transport via
Code and datasets for the paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction"
KnowPrompt Code and datasets for our paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction" Requireme
A bare-bones Python library for quality diversity optimization.
pyribs Website Source PyPI Conda CI/CD Docs Docs Status Twitter pyribs.org GitHub docs.pyribs.org A bare-bones Python library for quality diversity op
Retentioneering: product analytics, data-driven customer journey map optimization, marketing analytics, web analytics, transaction analytics, graph visualization, and behavioral segmentation with customer segments in Python.
What is Retentioneering? Retentioneering is a Python framework and library to assist product analysts and marketing analysts as it makes it easier to
MBPO (paper: When to trust your model: Model-based policy optimization) in offline RL settings
offline-MBPO This repository contains the code of a version of model-based RL algorithm MBPO, which is modified to perform in offline RL settings Pape
Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO)
V-MPO Simple code to demonstrate Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO) in Pyt
High-quality implementations of standard and SOTA methods on a variety of tasks.
Uncertainty Baselines The goal of Uncertainty Baselines is to provide a template for researchers to build on. The baselines can be a starting point fo
Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning
Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning Update (September 18th, 2021) A supporting document de
A library for optimization on Riemannian manifolds
TensorFlow RiemOpt A library for manifold-constrained optimization in TensorFlow. Installation To install the latest development version from GitHub:
Python Image Optimizer Script
Image-Optimizer Download and Install git clone https://github.com/stefankumpan/Image-Optimizer-Script.git cd Image-Optimizer-Script pip install -r req
PyTorch implementation of Constrained Policy Optimization
PyTorch implementation of Constrained Policy Optimization (CPO) This repository has a simple to understand and use implementation of CPO in PyTorch. A
FedMM: Saddle Point Optimization for Federated Adversarial Domain Adaptation
This repository contains the code accompanying the paper " FedMM: Saddle Point Optimization for Federated Adversarial Domain Adaptation" Paper link: R
Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train format
ttopt Description Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train (TT) format and maximu
Companion code for the paper "An Infinite-Feature Extension for Bayesian ReLU Nets That Fixes Their Asymptotic Overconfidence" (NeurIPS 2021)
ReLU-GP Residual (RGPR) This repository contains code for reproducing the following NeurIPS 2021 paper: @inproceedings{kristiadi2021infinite, title=
Lale is a Python library for semi-automated data science.
Lale is a Python library for semi-automated data science. Lale makes it easy to automatically select algorithms and tune hyperparameters of pipelines that are compatible with scikit-learn, in a type-safe fashion.
Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations.
BO-GP Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations. The BO-GP codes are developed using GPy and GPyOpt. The optimizer
Acoustic mosquito detection code with Bayesian Neural Networks
HumBugDB Acoustic mosquito detection with Bayesian Neural Networks. Extract audio or features from our large-scale dataset on Zenodo. This repository
ETMO: Evolutionary Transfer Multiobjective Optimization
ETMO: Evolutionary Transfer Multiobjective Optimization To promote the research on ETMO, benchmark problems are of great importance to ETMO algorithm
Solver for Large-Scale Rank-One Semidefinite Relaxations
STRIDE: spectrahedral proximal gradient descent along vertices A Solver for Large-Scale Rank-One Semidefinite Relaxations About STRIDE is designed for
A repository for collating all the resources such as articles, blogs, papers, and books related to Bayesian Statistics.
A repository for collating all the resources such as articles, blogs, papers, and books related to Bayesian Statistics.
Hypernets: A General Automated Machine Learning framework to simplify the development of End-to-end AutoML toolkits in specific domains.
A General Automated Machine Learning framework to simplify the development of End-to-end AutoML toolkits in specific domains.
Nature-inspired algorithms are a very popular tool for solving optimization problems.
Nature-inspired algorithms are a very popular tool for solving optimization problems. Numerous variants of nature-inspired algorithms have been develo
A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization components are included and optional.
Description A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization co
CONetV2: Efficient Auto-Channel Size Optimization for CNNs
CONetV2: Efficient Auto-Channel Size Optimization for CNNs Exciting News! CONetV2: Efficient Auto-Channel Size Optimization for CNNs has been accepted
Information-Theoretic Multi-Objective Bayesian Optimization with Continuous Approximations
Information-Theoretic Multi-Objective Bayesian Optimization with Continuous Approximations Requirements The code is implemented in Python and requires
Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution
unfoldedVBA Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution This repository contains the Pytorch implementation of the unrolled
Exploring the link between uncertainty estimates obtained via "exact" Bayesian inference and out-of-distribution (OOD) detection.
Uncertainty-based OOD detection Exploring the link between uncertainty estimates obtained by "exact" Bayesian inference and out-of-distribution (OOD)
Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees"
Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees" Installa
Deep Sea Treasure Environment for Multi-Objective Optimization Research
DeepSeaTreasure Environment Installation In order to get started with this environment, you can install it using the following command: python3 -m pip
Bayesian regularization for functional graphical models.
BayesFGM Paper: Jiajing Niu, Andrew Brown. Bayesian regularization for functional graphical models. Requirements R version 3.6.3 and up Python 3.6 and
HyperaPy: An automatic hyperparameter optimization framework ⚡🚀
hyperpy HyperPy: An automatic hyperparameter optimization framework Description HyperPy: Library for automatic hyperparameter optimization. Build on t
Experiments for distributed optimization algorithms
Network-Distributed Algorithm Experiments -- This repository contains a set of optimization algorithms and objective functions, and all code needed to
OptaPy is an AI constraint solver for Python to optimize planning and scheduling problems.
OptaPy is an AI constraint solver for Python to optimize the Vehicle Routing Problem, Employee Rostering, Maintenance Scheduling, Task Assignment, School Timetabling, Cloud Optimization, Conference Scheduling, Job Shop Scheduling, Bin Packing and many more planning problems.
BASTA: The BAyesian STellar Algorithm
BASTA: BAyesian STellar Algorithm Current stable version: v1.0 Important note: BASTA is developed for Python 3.8, but Python 3.7 should work as well.
A topology optimization framework written in Taichi programming language, which is embedded in Python.
Taichi TopOpt (Under Active Development) Intro A topology optimization framework written in Taichi programming language, which is embedded in Python.
Fast batch image resizer and rotator for JPEG and PNG images.
imgp is a command line image resizer and rotator for JPEG and PNG images.
A Python Package for Portfolio Optimization using the Critical Line Algorithm
A Python Package for Portfolio Optimization using the Critical Line Algorithm
A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualization
Website, Tutorials, and Docs Uncertainty Toolbox A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualizatio
A Python Package for Portfolio Optimization using the Critical Line Algorithm
PyCLA A Python Package for Portfolio Optimization using the Critical Line Algorithm Getting started To use PyCLA, clone the repo and install the requi
A tutorial on "Bayesian Compression for Deep Learning" published at NIPS (2017).
Code release for "Bayesian Compression for Deep Learning" In "Bayesian Compression for Deep Learning" we adopt a Bayesian view for the compression of
OptNet: Differentiable Optimization as a Layer in Neural Networks
OptNet: Differentiable Optimization as a Layer in Neural Networks This repository is by Brandon Amos and J. Zico Kolter and contains the PyTorch sourc
Riemannian Adaptive Optimization Methods with pytorch optim
geoopt Manifold aware pytorch.optim. Unofficial implementation for “Riemannian Adaptive Optimization Methods” ICLR2019 and more. Installation Make sur
TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"
TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"
ppo_pytorch_cpp - an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch
PPO Pytorch C++ This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment t
Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286
Pytorch-DPPO Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286 Using PPO with clip loss (from https
easyopt is a super simple yet super powerful optuna-based Hyperparameters Optimization Framework that requires no coding.
easyopt is a super simple yet super powerful optuna-based Hyperparameters Optimization Framework that requires no coding.
OptNet: Differentiable Optimization as a Layer in Neural Networks
OptNet: Differentiable Optimization as a Layer in Neural Networks This repository is by Brandon Amos and J. Zico Kolter and contains the PyTorch sourc
Task-based end-to-end model learning in stochastic optimization
Task-based End-to-end Model Learning in Stochastic Optimization This repository is by Priya L. Donti, Brandon Amos, and J. Zico Kolter and contains th
Official PyTorch code of DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context Graph and Relation-based Optimization (ICCV 2021 Oral).
DeepPanoContext (DPC) [Project Page (with interactive results)][Paper] DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context G
Certifiable Outlier-Robust Geometric Perception
Certifiable Outlier-Robust Geometric Perception About This repository holds the implementation for certifiably solving outlier-robust geometric percep
PennyLane is a cross-platform Python library for differentiable programming of quantum computers.
PennyLane is a cross-platform Python library for differentiable programming of quantum computers. Train a quantum computer the same way as a neural network.
GNPy: Optical Route Planning and DWDM Network Optimization
GNPy is an open-source, community-developed library for building route planning and optimization tools in real-world mesh optical networks
OptaPlanner wrappers for Python. Currently significantly slower than OptaPlanner in Java or Kotlin.
OptaPy is an AI constraint solver for Python to optimize the Vehicle Routing Problem, Employee Rostering, Maintenance Scheduling, Task Assignment, School Timetabling, Cloud Optimization, Conference Scheduling, Job Shop Scheduling, Bin Packing and many more planning problems.
Extract and visualize information from Gurobi log files
GRBlogtools Extract information from Gurobi log files and generate pandas DataFrames or Excel worksheets for further processing. Also includes a wrapp
Automated Hyperparameter Optimization Competition
QQ浏览器2021AI算法大赛 - 自动超参数优化竞赛 ACM CIKM 2021 AnalyticCup 在信息流推荐业务场景中普遍存在模型或策略效果依赖于“超参数”的问题,而“超参数"的设定往往依赖人工经验调参,不仅效率低下维护成本高,而且难以实现更优效果。因此,本次赛题以超参数优化为主题,从真
Fourier-Bayesian estimation of stochastic volatility models
fourier-bayesian-sv-estimation Fourier-Bayesian estimation of stochastic volatility models Code used to run the numerical examples of "Bayesian Approa
scrilla: A Financial Optimization Application
A python application that wraps around AlphaVantage, Quandl and IEX APIs, calculates financial statistics and optimizes portfolio allocations.
An efficient framework for reinforcement learning.
rl: An efficient framework for reinforcement learning Requirements Introduction PPO Test Requirements name version Python =3.7 numpy =1.19 torch =1