3742 Repositories
Python deep-sequential-model Libraries
A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data
A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data Overview Clustering analysis is widely utilized in single-cell RNA-seque
CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022)
CMUA-Watermark The official code for CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022) arxiv. It is bas
A PyTorch based deep learning library for drug pair scoring.
Documentation | External Resources | Datasets | Examples ChemicalX is a deep learning library for drug-drug interaction, polypharmacy side effect and
Training deep models using anime, illustration images.
animeface deep models for anime images. Datasets anime-face-dataset Anime faces collected from Getchu.com. Based on Mckinsey666's dataset. 63.6K image
A PyTorch-based model pruning toolkit for pre-trained language models
English | 中文说明 TextPruner是一个为预训练语言模型设计的模型裁剪工具包,通过轻量、快速的裁剪方法对模型进行结构化剪枝,从而实现压缩模型体积、提升模型速度。 其他相关资源: 知识蒸馏工具TextBrewer:https://github.com/airaria/TextBrewe
Functional deep learning
Pipeline abstractions for deep learning. Full documentation here: https://lf1-io.github.io/padl/ PADL: is a pipeline builder for PyTorch. may be used
ChainerRL is a deep reinforcement learning library built on top of Chainer.
ChainerRL and PFRL ChainerRL (this repository) is a deep reinforcement learning library that implements various state-of-the-art deep reinforcement al
Deep Reinforcement Learning for Keras.
Deep Reinforcement Learning for Keras What is it? keras-rl implements some state-of-the art deep reinforcement learning algorithms in Python and seaml
DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism (SVS & TTS); AAAI 2022
DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism This repository is the official PyTorch implementation of our AAAI-2022 paper, in
[CVPR 2020] Local Class-Specific and Global Image-Level Generative Adversarial Networks for Semantic-Guided Scene Generation
Contents Local and Global GAN Cross-View Image Translation Semantic Image Synthesis Acknowledgments Related Projects Citation Contributions Collaborat
[CVPR 2019 Oral] Multi-Channel Attention Selection GAN with Cascaded Semantic Guidance for Cross-View Image Translation
SelectionGAN for Guided Image-to-Image Translation CVPR Paper | Extended Paper | Guided-I2I-Translation-Papers Citation If you use this code for your
AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation
AtlasNet [Project Page] [Paper] [Talk] AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation Thibault Groueix, Matthew Fisher, Vladimir
Open source repository for the code accompanying the paper 'PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations'.
PatchNets This is the official repository for the project "PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations". For details,
[ECCV'20] Convolutional Occupancy Networks
Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page | Blog Post This repository contains the implementation o
Volumetric Correspondence Networks for Optical Flow, NeurIPS 2019.
VCN: Volumetric correspondence networks for optical flow [project website] Requirements python 3.6 pytorch 1.1.0-1.3.0 pytorch correlation module (opt
GAN-based 3D human pose estimation model for 3DV'17 paper
Tensorflow implementation for 3DV 2017 conference paper "Adversarially Parameterized Optimization for 3D Human Pose Estimation". @inproceedings{jack20
Training PyTorch models with differential privacy
Opacus is a library that enables training PyTorch models with differential privacy. It supports training with minimal code changes required on the cli
A deep learning network built with TensorFlow and Keras to classify gender and estimate age.
Convolutional Neural Network (CNN). This repository contains a source code of a deep learning network built with TensorFlow and Keras to classify gend
Computer vision - fun segmentation experience using classic and deep tools :)
Computer_Vision_Segmentation_Fun Segmentation of Images and Video. Tools: pytorch Models: Classic model - GrabCut Deep model - Deeplabv3_resnet101 Flo
[CoRL 21'] TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view Stereo
TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view Stereo Lukas Koestler1* Nan Yang1,2*,† Niclas Zeller2,3 Daniel Cremers1
Yuno is context based search engine for anime.
Yuno yuno.mp4 Table of Contents Introduction Power Of Yuno Try Yuno How Yuno was created? References Introduction Yuno is a context based search engin
A Re-implementation of the paper "A Deep Learning Framework for Character Motion Synthesis and Editing"
What is This This is a simple re-implementation of the paper "A Deep Learning Framework for Character Motion Synthesis and Editing"(1). Only Sections
Tensorflow Implementation of ECCV'18 paper: Multimodal Human Motion Synthesis
MT-VAE for Multimodal Human Motion Synthesis This is the code for ECCV 2018 paper MT-VAE: Learning Motion Transformations to Generate Multimodal Human
PyTorch implementation of Deep HDR Imaging via A Non-Local Network (TIP 2020).
NHDRRNet-PyTorch This is the PyTorch implementation of Deep HDR Imaging via A Non-Local Network (TIP 2020). 0. Differences between Original Paper and
Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring
Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring
Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression.
Spatio-Temporal Entropy Model A Pytorch Reproduction of Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression. More details can
scikit-learn models hyperparameters tuning and feature selection, using evolutionary algorithms.
Sklearn-genetic-opt scikit-learn models hyperparameters tuning and feature selection, using evolutionary algorithms. This is meant to be an alternativ
Automatically remove the mosaics in images and videos, or add mosaics to them.
Automatically remove the mosaics in images and videos, or add mosaics to them.
BERT-based Financial Question Answering System
BERT-based Financial Question Answering System In this example, we use Jina, PyTorch, and Hugging Face transformers to build a production-ready BERT-b
Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning
Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning This is the official repository for Conservative and Adaptive Penalty fo
Codes for building and training the neural network model described in Domain-informed neural networks for interaction localization within astroparticle experiments.
Domain-informed Neural Networks Codes for building and training the neural network model described in Domain-informed neural networks for interaction
The InterScript dataset contains interactive user feedback on scripts generated by a T5-XXL model.
Interscript The Interscript dataset contains interactive user feedback on a T5-11B model generated scripts. Dataset data.json contains the data in an
Deep Learning segmentation suite designed for 2D microscopy image segmentation
Deep Learning segmentation suite dessigned for 2D microscopy image segmentation This repository provides researchers with a code to try different enco
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)
Introduction QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.
The source code is temporariy removed, as we are solving potential copyright and license issues with GRANSO (http://www.timmitchell.com/software/GRANS
Reference code for the paper "Cross-Camera Convolutional Color Constancy" (ICCV 2021)
Cross-Camera Convolutional Color Constancy, ICCV 2021 (Oral) Mahmoud Afifi1,2, Jonathan T. Barron2, Chloe LeGendre2, Yun-Ta Tsai2, and Francois Bleibe
Code for Deep Single-image Portrait Image Relighting
Deep Single-Image Portrait Relighting [Project Page] Hao Zhou, Sunil Hadap, Kalyan Sunkavalli, David W. Jacobs. In ICCV, 2019 Overview Test script for
Implementation of Nalbach et al. 2017 paper.
Deep Shading Convolutional Neural Networks for Screen-Space Shading Our project is based on Nalbach et al. 2017 paper. In this project, a set of buffe
DECA: Detailed Expression Capture and Animation (SIGGRAPH 2021)
DECA: Detailed Expression Capture and Animation (SIGGRAPH2021) input image, aligned reconstruction, animation with various poses & expressions This is
An end-to-end library for editing and rendering motion of 3D characters with deep learning [SIGGRAPH 2020]
Deep-motion-editing This library provides fundamental and advanced functions to work with 3D character animation in deep learning with Pytorch. The co
This repository contains the source code for the paper First Order Motion Model for Image Animation
!!! Check out our new paper and framework improved for articulated objects First Order Motion Model for Image Animation This repository contains the s
PyTorch implementation for our paper Learning Character-Agnostic Motion for Motion Retargeting in 2D, SIGGRAPH 2019
Learning Character-Agnostic Motion for Motion Retargeting in 2D We provide PyTorch implementation for our paper Learning Character-Agnostic Motion for
A high-level yet extensible library for fast language model tuning via automatic prompt search
ruPrompts ruPrompts is a high-level yet extensible library for fast language model tuning via automatic prompt search, featuring integration with Hugg
Working demo of the Multi-class and Anomaly classification model using the CLIP feature space
👁️ Hindsight AI: Crime Classification With Clip About For Educational Purposes Only This is a recursive neural net trained to classify specific crime
Chinese NER with albert/electra or other bert descendable model (keras)
Chinese NLP (albert/electra with Keras) Named Entity Recognization Project Structure ./ ├── NER │ ├── __init__.py │ ├── log
Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.
Codes-for-Algorithms Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.
A model that attempts to learn and benefit from data collected on card counting.
A model that attempts to learn and benefit from data collected on card counting. A decision tree like model is built to win more often than loose and increase the bet of the player appropriately to come out winning as much money as possible.
Flow is a computational framework for deep RL and control experiments for traffic microsimulation.
Flow Flow is a computational framework for deep RL and control experiments for traffic microsimulation. See our website for more information on the ap
Dust model dichotomous performance analysis
Dust-model-dichotomous-performance-analysis Using a collated dataset of 90,000 dust point source observations from 9 drylands studies from around the
Rotary Transformer is an MLM pre-trained language model with rotary position embedding (RoPE)
[中文|English] Rotary Transformer Rotary Transformer is an MLM pre-trained language model with rotary position embedding (RoPE). The RoPE is a relative
Malaya-Speech is a Speech-Toolkit library for bahasa Malaysia, powered by Deep Learning Tensorflow.
Malaya-Speech is a Speech-Toolkit library for bahasa Malaysia, powered by Deep Learning Tensorflow. Documentation Proper documentation is available at
Model parallel transformers in JAX and Haiku
Table of contents Mesh Transformer JAX Updates Pretrained Models GPT-J-6B Links Acknowledgments License Model Details Zero-Shot Evaluations Architectu
Unofficial implementation of Google's FNet: Mixing Tokens with Fourier Transforms
FNet: Mixing Tokens with Fourier Transforms Pytorch implementation of Fnet : Mixing Tokens with Fourier Transforms. Citation: @misc{leethorp2021fnet,
Code for CodeT5: a new code-aware pre-trained encoder-decoder model.
CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation This is the official PyTorch implementation
Pretrained language model and its related optimization techniques developed by Huawei Noah's Ark Lab.
Pretrained Language Model This repository provides the latest pretrained language models and its related optimization techniques developed by Huawei N
Transformer training code for sequential tasks
Sequential Transformer This is a code for training Transformers on sequential tasks such as language modeling. Unlike the original Transformer archite
Mesh TensorFlow: Model Parallelism Made Easier
Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying
🤗 Transformers: State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX.
English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained models
Large-scale Self-supervised Pre-training Across Tasks, Languages, and Modalities
Hiring We are hiring at all levels (including FTE researchers and interns)! If you are interested in working with us on NLP and large-scale pre-traine
Unsupervised Language Model Pre-training for French
FlauBERT and FLUE FlauBERT is a French BERT trained on a very large and heterogeneous French corpus. Models of different sizes are trained using the n
The code for two papers: Feedback Transformer and Expire-Span.
transformer-sequential This repo contains the code for two papers: Feedback Transformer Expire-Span The training code is structured for long sequentia
Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing
Introduction Funnel-Transformer is a new self-attention model that gradually compresses the sequence of hidden states to a shorter one and hence reduc
Sinkhorn Transformer - Practical implementation of Sparse Sinkhorn Attention
Sinkhorn Transformer This is a reproduction of the work outlined in Sparse Sinkhorn Attention, with additional enhancements. It includes a parameteriz
DeLighT: Very Deep and Light-Weight Transformers
DeLighT: Very Deep and Light-weight Transformers This repository contains the source code of our work on building efficient sequence models: DeFINE (I
Fully featured implementation of Routing Transformer
Routing Transformer A fully featured implementation of Routing Transformer. The paper proposes using k-means to route similar queries / keys into the
DeBERTa: Decoding-enhanced BERT with Disentangled Attention
DeBERTa: Decoding-enhanced BERT with Disentangled Attention This repository is the official implementation of DeBERTa: Decoding-enhanced BERT with Dis
CodeBERT: A Pre-Trained Model for Programming and Natural Languages.
CodeBERT This repo provides the code for reproducing the experiments in CodeBERT: A Pre-Trained Model for Programming and Natural Languages. CodeBERT
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators
ELECTRA Introduction ELECTRA is a method for self-supervised language representation learning. It can be used to pre-train transformer networks using
Conditional Transformer Language Model for Controllable Generation
CTRL - A Conditional Transformer Language Model for Controllable Generation Authors: Nitish Shirish Keskar, Bryan McCann, Lav Varshney, Caiming Xiong,
Library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research.
Tensor2Tensor Tensor2Tensor, or T2T for short, is a library of deep learning models and datasets designed to make deep learning more accessible and ac
An implementation of model parallel GPT-2 and GPT-3-style models using the mesh-tensorflow library.
GPT Neo 🎉 1T or bust my dudes 🎉 An implementation of model & data parallel GPT3-like models using the mesh-tensorflow library. If you're just here t
Awesome Treasure of Transformers Models Collection
💁 Awesome Treasure of Transformers Models for Natural Language processing contains papers, videos, blogs, official repo along with colab Notebooks. 🛫☑️
Infrastructure template and Jupyter notebooks for running RoseTTAFold on AWS Batch.
AWS RoseTTAFold Infrastructure template and Jupyter notebooks for running RoseTTAFold on AWS Batch. Overview Proteins are large biomolecules that play
Pytorch implementation of the paper "Class-Balanced Loss Based on Effective Number of Samples"
Class-balanced-loss-pytorch Pytorch implementation of the paper Class-Balanced Loss Based on Effective Number of Samples presented at CVPR'19. Yin Cui
Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. CVPR 2018
Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning Tensorflow code and models for the paper: Large Scale Fine-Grained Categ
Code for paper "Learning to Reweight Examples for Robust Deep Learning"
learning-to-reweight-examples Code for paper Learning to Reweight Examples for Robust Deep Learning. [arxiv] Environment We tested the code on tensorf
PyTorch Implementation of the paper Learning to Reweight Examples for Robust Deep Learning
Learning to Reweight Examples for Robust Deep Learning Unofficial PyTorch implementation of Learning to Reweight Examples for Robust Deep Learning. Th
A Pytorch reproduction of Range Loss, which is proposed in paper 《Range Loss for Deep Face Recognition with Long-Tailed Training Data》
RangeLoss Pytorch This is a Pytorch reproduction of Range Loss, which is proposed in paper 《Range Loss for Deep Face Recognition with Long-Tailed Trai
Deep learning for Engineers - Physics Informed Deep Learning
SciANN: Neural Networks for Scientific Computations SciANN is a Keras wrapper for scientific computations and physics-informed deep learning. New to S
Efficient and Scalable Physics-Informed Deep Learning and Scientific Machine Learning on top of Tensorflow for multi-worker distributed computing
Notice: Support for Python 3.6 will be dropped in v.0.2.1, please plan accordingly! Efficient and Scalable Physics-Informed Deep Learning Collocation-
PyDEns is a framework for solving Ordinary and Partial Differential Equations (ODEs & PDEs) using neural networks
PyDEns PyDEns is a framework for solving Ordinary and Partial Differential Equations (ODEs & PDEs) using neural networks. With PyDEns one can solve PD
Physics-Informed Neural Networks (PINN) and Deep BSDE Solvers of Differential Equations for Scientific Machine Learning (SciML) accelerated simulation
NeuralPDE NeuralPDE.jl is a solver package which consists of neural network solvers for partial differential equations using scientific machine learni
Learn the Deep Learning for Computer Vision in three steps: theory from base to SotA, code in PyTorch, and space-repetition with Anki
DeepCourse: Deep Learning for Computer Vision arthurdouillard.com/deepcourse/ This is a course I'm giving to the French engineering school EPITA each
Deep Learning Theory
Deep Learning Theory 整理了一些深度学习的理论相关内容,持续更新。 Overview Recent advances in deep learning theory 总结了目前深度学习理论研究的六个方向的一些结果,概述型,没做深入探讨(2021)。 1.1 complexity
Implementation of Research Paper "Learning to Enhance Low-Light Image via Zero-Reference Deep Curve Estimation"
Zero-DCE and Zero-DCE++(Lite architechture for Mobile and edge Devices) Papers Abstract The paper presents a novel method, Zero-Reference Deep Curve E
Memory-Augmented Model Predictive Control
Memory-Augmented Model Predictive Control This repository hosts the source code for the journal article "Composing MPC with LQR and Neural Networks fo
A program that uses an API and a AI model to get info of sotcks
Stock-Market-AI-Analysis I dont mind anyone using this code but please give me credit A program that uses an API and a AI model to get info of stocks
SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation
SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation SeqFormer SeqFormer: a Frustratingly Simple Model for Video Instance Segmentat
In generative deep geometry learning, we often get many obj files remain to be rendered
a python prompt cli script for blender batch render In deep generative geometry learning, we always get many .obj files to be rendered. Our rendered i
Text Classification in Turkish Texts with Bert
You can watch the details of the project on my youtube channel Project Interface Project Second Interface Goal= Correctly guessing the classification
A foreign language learning aid using a neural network to predict probability of translating foreign words
Langy Langy is a reading-focused foreign language learning aid orientated towards young children. Reading is an activity that every child knows. It is
A Python description of the Kinematic Bicycle Model with an animated example.
Kinematic Bicycle Model Abstract A python library for the Kinematic Bicycle model. The Kinematic Bicycle is a compromise between the non-linear and li
This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm.
This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm. It contains the code to reproduce the results presented in the original paper: https://arxiv.org/abs/2112.03670
Telegram chatbot created with deep learning model (LSTM) and telebot library.
Telegram chatbot Telegram chatbot created with deep learning model (LSTM) and telebot library. Description This program will allow you to create very
A PaddlePaddle version of Neural Renderer, refer to its PyTorch version
Neural 3D Mesh Renderer in PadddlePaddle A PaddlePaddle version of Neural Renderer, refer to its PyTorch version Install Run: pip install neural-rende
An official source code for paper Deep Graph Clustering via Dual Correlation Reduction, accepted by AAAI 2022
Dual Correlation Reduction Network An official source code for paper Deep Graph Clustering via Dual Correlation Reduction, accepted by AAAI 2022. Any
A toolkit for document-level event extraction, containing some SOTA model implementations
❤️ A Toolkit for Document-level Event Extraction with & without Triggers Hi, there 👋 . Thanks for your stay in this repo. This project aims at buildi
Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021
Introduction Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021 Prerequisites Python 3.8 and conda, get Conda CUDA 11
A 1.3B text-to-image generation model trained on 14 million image-text pairs
minDALL-E on Conceptual Captions minDALL-E, named after minGPT, is a 1.3B text-to-image generation model trained on 14 million image-text pairs for no
Using Bert as the backbone model for lime, designed for NLP task explanation (sentence pair text classification task)
Lime Comparing deep contextualized model for sentences highlighting task. In addition, take the classic explanation model "LIME" with bert-base model