3742 Repositories
Python deep-sequential-model Libraries
A Pytorch implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE
SMU_pytorch A Pytorch Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/ab
Count the MACs / FLOPs of your PyTorch model.
THOP: PyTorch-OpCounter How to install pip install thop (now continously intergrated on Github actions) OR pip install --upgrade git+https://github.co
GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models
GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Model This repository is the official PyTorch implementation of GraphRNN, a graph gene
Pre-trained Deep Learning models and demos (high quality and extremely fast)
OpenVINO™ Toolkit - Open Model Zoo repository This repository includes optimized deep learning models and a set of demos to expedite development of hi
PlaidML is a framework for making deep learning work everywhere.
A platform for making deep learning work everywhere. Documentation | Installation Instructions | Building PlaidML | Contributing | Troubleshooting | R
PyTorch implementation for the Neuro-Symbolic Sudoku Solver leveraging the power of Neural Logic Machines (NLM)
Neuro-Symbolic Sudoku Solver PyTorch implementation for the Neuro-Symbolic Sudoku Solver leveraging the power of Neural Logic Machines (NLM). Please n
Selenium Page Object Model with Python
Page-object-model (POM) is a pattern that you can apply it to develop efficient automation framework.
Source code for Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning
Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning Official implementation of ACC, described in the paper "Adaptively Calibrated C
Fast mesh denoising with data driven normal filtering using deep variational autoencoders
Fast mesh denoising with data driven normal filtering using deep variational autoencoders This is an implementation for the paper entitled "Fast mesh
IMBENS: class-imbalanced ensemble learning in Python.
IMBENS: class-imbalanced ensemble learning in Python. Links: [Documentation] [Gallery] [PyPI] [Changelog] [Source] [Download] [知乎/Zhihu] [中文README] [a
Research code for the paper "Variational Gibbs inference for statistical estimation from incomplete data".
Variational Gibbs inference (VGI) This repository contains the research code for Simkus, V., Rhodes, B., Gutmann, M. U., 2021. Variational Gibbs infer
Deep Learning Emotion decoding using EEG data from Autism individuals
Deep Learning Emotion decoding using EEG data from Autism individuals This repository includes the python and matlab codes using for processing EEG 2D
Subnet Replacement Attack: Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks
Subnet Replacement Attack: Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks Official implementation of paper Towards Practic
This repository provides an unified frameworks to train and test the state-of-the-art few-shot font generation (FFG) models.
FFG-benchmarks This repository provides an unified frameworks to train and test the state-of-the-art few-shot font generation (FFG) models. What is Fe
A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥
Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re
Official Pytorch Code for the paper TransWeather
TransWeather Official Code for the paper TransWeather, Arxiv Tech Report 2021 Paper | Website About this repo: This repo hosts the implentation code,
Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model
Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model
A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks
A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks without the use of any outside machine learning libraries - all from scratch.
An optimized prompt tuning strategy comparable to fine-tuning across model scales and tasks.
P-tuning v2 P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks An optimized prompt tuning strategy achievi
Redis OM Python makes it easy to model Redis data in your Python applications.
Object mapping, and more, for Redis and Python Redis OM Python makes it easy to model Redis data in your Python applications. Redis OM Python | Redis
Fake videos detection by tracing the source using video hashing retrieval.
Vision Transformer Based Video Hashing Retrieval for Tracing the Source of Fake Videos 🎉️ 📜 Directory Introduction VTL Trace Samples and Acc of Hash
PointCNN: Convolution On X-Transformed Points (NeurIPS 2018)
PointCNN: Convolution On X-Transformed Points Created by Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Introduction PointCNN
Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera.
Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera. This project prepares training and testing data for various deep learning projects such as 6D object pose estimation projects singleshotpose, as well as object detection and instance segmentation projects.
Pytorch implementation for Patient Knowledge Distillation for BERT Model Compression
Patient Knowledge Distillation for BERT Model Compression Knowledge distillation for BERT model Installation Run command below to install the environm
Pytorch Lightning code guideline for conferences
Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •
An updated version of virtual model making
Model-Swap-Face v2 这个项目是基于stylegan2 pSp制作的,比v1版本Model-Swap-Face在推理速度和图像质量上有一定提升。主要的功能是将虚拟模特进行环球不同区域的风格转换,目前转换器提供西欧模特、东亚模特和北非模特三种主流的风格样式,可帮我们实现生产资料零成
Image Super-Resolution Using Very Deep Residual Channel Attention Networks
Image Super-Resolution Using Very Deep Residual Channel Attention Networks
Keras Model Implementation Walkthrough
Keras Model Implementation Walkthrough
Python scripts for performing stereo depth estimation using the MobileStereoNet model in Tensorflow Lite.
TFLite-MobileStereoNet Python scripts for performing stereo depth estimation using the MobileStereoNet model in Tensorflow Lite. Stereo depth estimati
TLoL (Python Module) - League of Legends Deep Learning AI (Research and Development)
TLoL-py - League of Legends Deep Learning Library TLoL-py is the Python component of the TLoL League of Legends deep learning library. It provides a s
A logistic regression model for health insurance purchasing prediction
Logistic_Regression_Model A logistic regression model for health insurance purchasing prediction This code is using these packages, so please make sur
Haystack is an open source NLP framework that leverages Transformer models.
Haystack is an end-to-end framework that enables you to build powerful and production-ready pipelines for different search use cases. Whether you want
Pytorch and Keras Implementations of Hyperspectral Image Classification -- Traditional to Deep Models: A Survey for Future Prospects.
The repository contains the implementations for Hyperspectral Image Classification -- Traditional to Deep Models: A Survey for Future Prospects. Model
Simple and Distributed Machine Learning
Synapse Machine Learning SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. Sy
A simple and extensible library to create Bayesian Neural Network layers on PyTorch.
Blitz - Bayesian Layers in Torch Zoo BLiTZ is a simple and extensible library to create Bayesian Neural Network Layers (based on whats proposed in Wei
Qlib is an AI-oriented quantitative investment platform
Qlib is an AI-oriented quantitative investment platform, which aims to realize the potential, empower the research, and create the value of AI technologies in quantitative investment.
KakaoBrain KoGPT (Korean Generative Pre-trained Transformer)
KoGPT KoGPT (Korean Generative Pre-trained Transformer) https://github.com/kakaobrain/kogpt https://huggingface.co/kakaobrain/kogpt Model Descriptions
High performance distributed framework for training deep learning recommendation models based on PyTorch.
PERSIA (Parallel rEcommendation tRaining System with hybrId Acceleration) is developed by AI platform@Kuaishou Technology, collaborating with ETH. It
大规模推荐算法库,包含推荐系统经典及最新算法LR、Wide&Deep、DSSM、TDM、MIND、Word2Vec、DeepWalk、SSR、GRU4Rec、Youtube_dnn、NCF、GNN、FM、FFM、DeepFM、DCN、DIN、DIEN、DLRM、MMOE、PLE、ESMM、MAML、xDeepFM、DeepFEFM、NFM、AFM、RALM、Deep Crossing、PNN、BST、AutoInt、FGCNN、FLEN、ListWise等
(中文文档|简体中文|English) 什么是推荐系统? 推荐系统是在互联网信息爆炸式增长的时代背景下,帮助用户高效获得感兴趣信息的关键; 推荐系统也是帮助产品最大限度吸引用户、留存用户、增加用户粘性、提高用户转化率的银弹。 有无数优秀的产品依靠用户可感知的推荐系统建立了良好的口碑,也有无数的公司依
🔥 TensorFlow Code for technical report: "YOLOv3: An Incremental Improvement"
🆕 Are you looking for a new YOLOv3 implemented by TF2.0 ? If you hate the fucking tensorflow1.x very much, no worries! I have implemented a new YOLOv
Use tensorflow to implement a Deep Neural Network for real time lane detection
LaneNet-Lane-Detection Use tensorflow to implement a Deep Neural Network for real time lane detection mainly based on the IEEE IV conference paper "To
Monk is a low code Deep Learning tool and a unified wrapper for Computer Vision.
Monk - A computer vision toolkit for everyone Why use Monk Issue: Want to begin learning computer vision Solution: Start with Monk's hands-on study ro
alfred-py: A deep learning utility library for **human**
Alfred Alfred is command line tool for deep-learning usage. if you want split an video into image frames or combine frames into a single video, then a
Official pytorch implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"
SinGAN Project | Arxiv | CVF | Supplementary materials | Talk (ICCV`19) Official pytorch implementation of the paper: "SinGAN: Learning a Generative M
We are building an open database of COVID-19 cases with chest X-ray or CT images.
🛑 Note: please do not claim diagnostic performance of a model without a clinical study! This is not a kaggle competition dataset. Please read this pa
SMPL-X: A new joint 3D model of the human body, face and hands together
SMPL-X: A new joint 3D model of the human body, face and hands together [Paper Page] [Paper] [Supp. Mat.] Table of Contents License Description News I
Code release for Local Light Field Fusion at SIGGRAPH 2019
Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion
Python scripts for performing stereo depth estimation using the MobileStereoNet model in ONNX
ONNX-MobileStereoNet Python scripts for performing stereo depth estimation using the MobileStereoNet model in ONNX Stereo depth estimation on the cone
Forecasting prices using Facebook/Meta's Prophet model
CryptoForecasting using Machine and Deep learning (Part 1) CryptoForecasting using Machine Learning The main aspect of predicting the stock-related da
Generate text captions for images from their CLIP embeddings. Includes PyTorch model code and example training script.
clip-text-decoder Generate text captions for images from their CLIP embeddings. Includes PyTorch model code and example training script. Example Predi
The FIRST GANs-based omics-to-omics translation framework
OmiTrans Please also have a look at our multi-omics multi-task DL freamwork 👀 : OmiEmbed The FIRST GANs-based omics-to-omics translation framework Xi
A linear regression model for house price prediction
Linear_Regression_Model A linear regression model for house price prediction. This code is using these packages, so please make sure your have install
Code of the paper "Deep Human Dynamics Prior" in ACM MM 2021.
Code of the paper "Deep Human Dynamics Prior" in ACM MM 2021. Figure 1: In the process of motion capture (mocap), some joints or even the whole human
Deep Sketch-guided Cartoon Video Inbetweening
Cartoon Video Inbetweening Paper | DOI | Video The source code of Deep Sketch-guided Cartoon Video Inbetweening by Xiaoyu Li, Bo Zhang, Jing Liao, Ped
Package to compute Mauve, a similarity score between neural text and human text. Install with `pip install mauve-text`.
MAUVE MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE
Unofficial implementation of Proxy Anchor Loss for Deep Metric Learning
Proxy Anchor Loss for Deep Metric Learning Unofficial pytorch, tensorflow and mxnet implementations of Proxy Anchor Loss for Deep Metric Learning. Not
Learning Convolutional Neural Networks with Interactive Visualization.
CNN Explainer An interactive visualization system designed to help non-experts learn about Convolutional Neural Networks (CNNs) For more information,
Learning Pixel-level Semantic Affinity with Image-level Supervision for Weakly Supervised Semantic Segmentation, CVPR 2018
Learning Pixel-level Semantic Affinity with Image-level Supervision This code is deprecated. Please see https://github.com/jiwoon-ahn/irn instead. Int
labelpix is a graphical image labeling interface for drawing bounding boxes
Welcome to labelpix 👋 labelpix is a graphical image labeling interface for drawing bounding boxes. 🏠 Homepage Install pip install -r requirements.tx
HuggingTweets - Train a model to generate tweets
HuggingTweets - Train a model to generate tweets Create in 5 minutes a tweet generator based on your favorite Tweeter Make my own model with the demo
Deep High-Resolution Representation Learning for Human Pose Estimation
Deep High-Resolution Representation Learning for Human Pose Estimation (accepted to CVPR2019) News If you are interested in internship or research pos
DynaTune: Dynamic Tensor Program Optimization in Deep Neural Network Compilation
DynaTune: Dynamic Tensor Program Optimization in Deep Neural Network Compilation This repository is the implementation of DynaTune paper. This folder
A rough implementation of the paper "A Steering Algorithm for Redirected Walking Using Reinforcement Learning"
A rough implementation of the paper "A Steering Algorithm for Redirected Walking Using Reinforcement Learning"
MobileNetV1-V2,MobileNeXt,GhostNet,AdderNet,ShuffleNetV1-V2,Mobile+ViT etc.
MobileNetV1-V2,MobileNeXt,GhostNet,AdderNet,ShuffleNetV1-V2,Mobile+ViT etc. ⭐⭐⭐⭐⭐
Reproduction repository for the MDX 2021 Hybrid Demucs model
Submission This is the submission for MDX 2021 Track A, for Track B go to the track_b branch. Submission Summary Submission ID: 151378 Submitter: defo
Codes for NeurIPS 2021 paper "Adversarial Neuron Pruning Purifies Backdoored Deep Models"
Adversarial Neuron Pruning Purifies Backdoored Deep Models Code for NeurIPS 2021 "Adversarial Neuron Pruning Purifies Backdoored Deep Models" by Dongx
Simple converter for deploying Stable-Baselines3 model to TFLite and/or Coral
Running SB3 developed agents on TFLite or Coral Introduction I've been using Stable-Baselines3 to train agents against some custom Gyms, some of which
Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays
Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays In this repo, you will find the instructions on how to requ
Deep Image Matting implementation in PyTorch
Deep Image Matting Deep Image Matting paper implementation in PyTorch. Differences "fc6" is dropped. Indices pooling. "fc6" is clumpy, over 100 millio
Indices Matter: Learning to Index for Deep Image Matting
IndexNet Matting This repository includes the official implementation of IndexNet Matting for deep image matting, presented in our paper: Indices Matt
Official repository for Natural Image Matting via Guided Contextual Attention
GCA-Matting: Natural Image Matting via Guided Contextual Attention The source codes and models of Natural Image Matting via Guided Contextual Attentio
Official repository for the paper F, B, Alpha Matting
FBA Matting Official repository for the paper F, B, Alpha Matting. This paper and project is under heavy revision for peer reviewed publication, and s
Bridging Composite and Real: Towards End-to-end Deep Image Matting
Bridging Composite and Real: Towards End-to-end Deep Image Matting Please note that the official repository of the paper Bridging Composite and Real:
Deep Video Matting via Spatio-Temporal Alignment and Aggregation [CVPR2021]
Deep Video Matting via Spatio-Temporal Alignment and Aggregation [CVPR2021] Paper: https://arxiv.org/abs/2104.11208 Introduction Despite the significa
Implementation of the Paper: "Parameterized Hypercomplex Graph Neural Networks for Graph Classification" by Tuan Le, Marco Bertolini, Frank Noé and Djork-Arné Clevert
Parameterized Hypercomplex Graph Neural Networks (PHC-GNNs) PHC-GNNs (Le et al., 2021): https://arxiv.org/abs/2103.16584 PHM Linear Layer Illustration
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".
Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without
mPose3D, a mmWave-based 3D human pose estimation model.
mPose3D, a mmWave-based 3D human pose estimation model.
The official repository for Deep Image Matting with Flexible Guidance Input
FGI-Matting The official repository for Deep Image Matting with Flexible Guidance Input. Paper: https://arxiv.org/abs/2110.10898 Requirements easydict
YOLOv4-v3 Training Automation API for Linux
This repository allows you to get started with training a state-of-the-art Deep Learning model with little to no configuration needed! You provide your labeled dataset or label your dataset using our BMW-LabelTool-Lite and you can start the training right away and monitor it in many different ways like TensorBoard or a custom REST API and GUI. NoCode training with YOLOv4 and YOLOV3 has never been so easy.
Deep Learning Pipelines for Apache Spark
Deep Learning Pipelines for Apache Spark The repo only contains HorovodRunner code for local CI and API docs. To use HorovodRunner for distributed tra
A model checker for verifying properties in epistemic models
Epistemic Model Checker This is a model checker for verifying properties in epistemic models. The goal of the model checker is to check for Pluralisti
GUI for TOAD-GAN, a PCG-ML algorithm for Token-based Super Mario Bros. Levels.
If you are using this code in your own project, please cite our paper: @inproceedings{awiszus2020toadgan, title={TOAD-GAN: Coherent Style Level Gene
Omnidirectional Scene Text Detection with Sequential-free Box Discretization (IJCAI 2019). Including competition model, online demo, etc.
Box_Discretization_Network This repository is built on the pytorch [maskrcnn_benchmark]. The method is the foundation of our ReCTs-competition method
Usable Implementation of "Bootstrap Your Own Latent" self-supervised learning, from Deepmind, in Pytorch
Bootstrap Your Own Latent (BYOL), in Pytorch Practical implementation of an astoundingly simple method for self-supervised learning that achieves a ne
Softlearning is a reinforcement learning framework for training maximum entropy policies in continuous domains. Includes the official implementation of the Soft Actor-Critic algorithm.
Softlearning Softlearning is a deep reinforcement learning toolbox for training maximum entropy policies in continuous domains. The implementation is
Keyword spotting on Arm Cortex-M Microcontrollers
Keyword spotting for Microcontrollers This repository consists of the tensorflow models and training scripts used in the paper: Hello Edge: Keyword sp
Revisiting Video Saliency: A Large-scale Benchmark and a New Model (CVPR18, PAMI19)
DHF1K =========================================================================== Wenguan Wang, J. Shen, M.-M Cheng and A. Borji, Revisiting Video Sal
NVTabular is a feature engineering and preprocessing library for tabular data designed to quickly and easily manipulate terabyte scale datasets used to train deep learning based recommender systems.
NVTabular is a feature engineering and preprocessing library for tabular data designed to quickly and easily manipulate terabyte scale datasets used to train deep learning based recommender systems.
Source code for CVPR 2020 paper "Learning to Forget for Meta-Learning"
L2F - Learning to Forget for Meta-Learning Sungyong Baik, Seokil Hong, Kyoung Mu Lee Source code for CVPR 2020 paper "Learning to Forget for Meta-Lear
Code for paper " AdderNet: Do We Really Need Multiplications in Deep Learning?"
AdderNet: Do We Really Need Multiplications in Deep Learning? This code is a demo of CVPR 2020 paper AdderNet: Do We Really Need Multiplications in De
SpinalNet: Deep Neural Network with Gradual Input
SpinalNet: Deep Neural Network with Gradual Input This repository contains scripts for training different variations of the SpinalNet and its counterp
Training code and evaluation benchmarks for the "Self-Supervised Policy Adaptation during Deployment" paper.
Self-Supervised Policy Adaptation during Deployment PyTorch implementation of PAD and evaluation benchmarks from Self-Supervised Policy Adaptation dur
Statistical tests for the sequential locality of graphs
Statistical tests for the sequential locality of graphs You can assess the statistical significance of the sequential locality of an adjacency matrix
Awesome Deep Graph Clustering is a collection of SOTA, novel deep graph clustering methods
ADGC: Awesome Deep Graph Clustering ADGC is a collection of state-of-the-art (SOTA), novel deep graph clustering methods (papers, codes and datasets).
The Instructed Glacier Model (IGM)
The Instructed Glacier Model (IGM) Overview The Instructed Glacier Model (IGM) simulates the ice dynamics, surface mass balance, and its coupling thro
A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation.
TiSASRec.paddle A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation. Introduction 论文:Time Interval Aware Sel
Official implementation of SIGIR'2021 paper: "Sequential Recommendation with Graph Neural Networks".
SURGE: Sequential Recommendation with Graph Neural Networks This is our TensorFlow implementation for the paper: Sequential Recommendation with Graph
Contrastively Disentangled Sequential Variational Audoencoder
Contrastively Disentangled Sequential Variational Audoencoder (C-DSVAE) Overview This is the implementation for our C-DSVAE, a novel self-supervised d
Augmenting Physical Models with Deep Networks for Complex Dynamics Forecasting
Official code of APHYNITY Augmenting Physical Models with Deep Networks for Complex Dynamics Forecasting (ICLR 2021, Oral) Yuan Yin*, Vincent Le Guen*