1423 Repositories
Python dual-path-networks Libraries
DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021]
DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021] Yiming Li, Shunli Ren, Pengxiang Wu, Siheng Chen, Chen Feng
A large-scale database for graph representation learning
A large-scale database for graph representation learning
UltraGCN: An Ultra Simplification of Graph Convolutional Networks for Recommendation
UltraGCN This is our Pytorch implementation for our CIKM 2021 paper: Kelong Mao, Jieming Zhu, Xi Xiao, Biao Lu, Zhaowei Wang, Xiuqiang He. UltraGCN: A
Code for the paper titled "Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks" (NeurIPS 2021 Spotlight).
Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks This repository contains the code and pre-trained
This repository is dedicated to developing and maintaining code for experiments with wide neural networks.
Wide-Networks This repository contains the code of various experiments on wide neural networks. In particular, we implement classes for abc-parameteri
GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily
GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily Abstract Graph Neural Networks (GNNs) are widely used on a
Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks
OnsagerNet Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks This is the original pyTorch implemenati
Face Detection and Alignment using Multi-task Cascaded Convolutional Networks (MTCNN)
Face-Detection-with-MTCNN Face detection is a computer vision problem that involves finding faces in photos. It is a trivial problem for humans to sol
Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks (MAPDN)
Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks (MAPDN) This is the implementation of the paper Multi-Age
Path finding algorithm visualizer with python
path-finding-algorithm-visualizer ~ click on the grid to place the starting block and then click elsewhere to add the end block ~ click again to place
Evaluation of TCP BBRv1 in wireless networks
The Network Simulator, Version 3 Table of Contents: An overview Building ns-3 Running ns-3 Getting access to the ns-3 documentation Working with the d
Custom Implementation of Non-Deep Networks
ParNet Custom Implementation of Non-deep Networks arXiv:2110.07641 Ankit Goyal, Alexey Bochkovskiy, Jia Deng, Vladlen Koltun Official Repository https
[NeurIPS 2021] "Drawing Robust Scratch Tickets: Subnetworks with Inborn Robustness Are Found within Randomly Initialized Networks" by Yonggan Fu, Qixuan Yu, Yang Zhang, Shang Wu, Xu Ouyang, David Cox, Yingyan Lin
Drawing Robust Scratch Tickets: Subnetworks with Inborn Robustness Are Found within Randomly Initialized Networks Yonggan Fu, Qixuan Yu, Yang Zhang, S
Gradient representations in ReLU networks as similarity functions
Gradient representations in ReLU networks as similarity functions by Dániel Rácz and Bálint Daróczy. This repo contains the python code related to our
Open source single image super-resolution toolbox containing various functionality for training a diverse number of state-of-the-art super-resolution models. Also acts as the companion code for the IEEE signal processing letters paper titled 'Improving Super-Resolution Performance using Meta-Attention Layers’.
Deep-FIR Codebase - Super Resolution Meta Attention Networks About This repository contains the main coding framework accompanying our work on meta-at
This repo is the official implementation of "L2ight: Enabling On-Chip Learning for Optical Neural Networks via Efficient in-situ Subspace Optimization".
L2ight is a closed-loop ONN on-chip learning framework to enable scalable ONN mapping and efficient in-situ learning. L2ight adopts a three-stage learning flow that first calibrates the complicated photonic circuit states under challenging physical constraints, then performs photonic core mapping via combined analytical solving and zeroth-order optimization.
TCPNet - Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition
Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition This is an implementation of TCPNet. Introduction For video recognition task, a g
Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks
Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks Setup This implementation is based on PyTorch = 1.0.0. Smal
SimplEx - Explaining Latent Representations with a Corpus of Examples
SimplEx - Explaining Latent Representations with a Corpus of Examples Code Author: Jonathan Crabbé ([email protected]) This repository contains the imp
OneFlow is a performance-centered and open-source deep learning framework.
OneFlow OneFlow is a performance-centered and open-source deep learning framework. Latest News Version 0.5.0 is out! First class support for eager exe
Recognize numbers from an (28 x 28) image using neural networks
Number recognition Recognize numbers from a 28 x 28 image using neural networks Usage This is an example of a simple usage of number-recognition NOTE:
With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function
With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function. At the moment, only TensorFlow sequential models are supported. Interfaces to either the Pyomo or Gurobi modeling environments are offered.
Video Matting via Consistency-Regularized Graph Neural Networks
Video Matting via Consistency-Regularized Graph Neural Networks Project Page | Real Data | Paper Installation Our code has been tested on Python 3.7,
Covid-19 Test AI (Deep Learning - NNs) Software. Accuracy is the %96.5, loss is the 0.09 :)
Covid-19 Test AI (Deep Learning - NNs) Software I developed a segmentation algorithm to understand whether Covid-19 Test Photos are positive or negati
Predicting path with preference based on user demonstration using Maximum Entropy Deep Inverse Reinforcement Learning in a continuous environment
Preference-Planning-Deep-IRL Introduction Check my portfolio post Dependencies Gym stable-baselines3 PyTorch Usage Take Demonstration python3 record.
ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees
ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees This repository is the official implementation of the empirica
Space Time Recurrent Memory Network - Pytorch
Space Time Recurrent Memory Network - Pytorch (wip) Implementation of Space Time Recurrent Memory Network, recurrent network competitive with attentio
Sharing of contents on mitochondrial encounter networks
mito-network-sharing Sharing of contents on mitochondrial encounter networks Required: R with igraph, brainGraph, ggplot2, and XML libraries; igraph l
Several tools that can be added to your `PATH` to make your life easier.
CK-CLI Tools Several tools that can be added to your PATH to make your life easier. prettypath Prints the $PATH variable in a human-readable way. It a
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021
Directed Graph Contrastive Learning The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this paper, we present the first con
Simple PyTorch hierarchical models.
A python package adding basic hierarchal networks in pytorch for classification tasks. It implements a simple hierarchal network structure based on feed-backward outputs.
A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen.
Master Release Pytorch - Py + Nim A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen. Because Nim compiles to C+
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)
A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson
This repository contains code demonstrating the methods outlined in Path Signature Area-Based Causal Discovery in Coupled Time Series presented at Causal Analysis Workshop 2021.
signed-area-causal-inference This repository contains code demonstrating the methods outlined in Path Signature Area-Based Causal Discovery in Coupled
Harmonic Memory Networks for Graph Completion
HMemNetworks Code and documentation for Harmonic Memory Networks, a series of models for compositionally assembling representations of graph elements
Code for the Weighted, Accelerated and Restarted Primal-dual algorithm. This algorithm achieves stable linear convergence for reconstruction from undersampled noisy measurements under an approximate sharpness condition. See the paper for details.
WARPd Code for the Weighted, Accelerated and Restarted Primal-dual algorithm. This algorithm achieves stable linear convergence for reconstruction fro
A Context-aware Visual Attention-based training pipeline for Object Detection from a Webpage screenshot!
CoVA: Context-aware Visual Attention for Webpage Information Extraction Abstract Webpage information extraction (WIE) is an important step to create k
DECAF: Generating Fair Synthetic Data Using Causally-Aware Generative Networks
DECAF (DEbiasing CAusal Fairness) Code Author: Trent Kyono This repository contains the code used for the "DECAF: Generating Fair Synthetic Data Using
Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks
Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks This is the master thesi
Official code for On Path Integration of Grid Cells: Group Representation and Isotropic Scaling (NeurIPS 2021)
On Path Integration of Grid Cells: Group Representation and Isotropic Scaling This repo contains the official implementation for the paper On Path Int
CBREN: Convolutional Neural Networks for Constant Bit Rate Video Quality Enhancement
CBREN This is the Pytorch implementation for our IEEE TCSVT paper : CBREN: Convolutional Neural Networks for Constant Bit Rate Video Quality Enhanceme
PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Condition Layer Normalization and Semi-Supervised Training in Text-To-Speech
Cross-Speaker-Emotion-Transfer - PyTorch Implementation PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Conditio
Attentive Implicit Representation Networks (AIR-Nets)
Attentive Implicit Representation Networks (AIR-Nets) Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV) teaser.mo
This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams.
Mutli-agent task allocation This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams. To change
Deep Networks with Recurrent Layer Aggregation
RLA-Net: Recurrent Layer Aggregation Recurrence along Depth: Deep Networks with Recurrent Layer Aggregation This is an implementation of RLA-Net (acce
Attentive Implicit Representation Networks (AIR-Nets)
Attentive Implicit Representation Networks (AIR-Nets) Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV) teaser.mo
Segmentation models with pretrained backbones. PyTorch.
Python library with Neural Networks for Image Segmentation based on PyTorch. The main features of this library are: High level API (just two lines to
This code provides various models combining dilated convolutions with residual networks
Overview This code provides various models combining dilated convolutions with residual networks. Our models can achieve better performance with less
Very Deep Convolutional Networks for Large-Scale Image Recognition
pytorch-vgg Some scripts to convert the VGG-16 and VGG-19 models [1] from Caffe to PyTorch. The converted models can be used with the PyTorch model zo
Training Very Deep Neural Networks Without Skip-Connections
DiracNets v2 update (January 2018): The code was updated for DiracNets-v2 in which we removed NCReLU by adding per-channel a and b multipliers without
PyTorch code for the "Deep Neural Networks with Box Convolutions" paper
Box Convolution Layer for ConvNets Single-box-conv network (from `examples/mnist.py`) learns patterns on MNIST What This Is This is a PyTorch implemen
PyTorch implementation of Octave Convolution with pre-trained Oct-ResNet and Oct-MobileNet models
octconv.pytorch PyTorch implementation of Octave Convolution in Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octa
Convolutional Neural Network for 3D meshes in PyTorch
MeshCNN in PyTorch SIGGRAPH 2019 [Paper] [Project Page] MeshCNN is a general-purpose deep neural network for 3D triangular meshes, which can be used f
A Pytorch implementation of "LegoNet: Efficient Convolutional Neural Networks with Lego Filters" (ICML 2019).
LegoNet This code is the implementation of ICML2019 paper LegoNet: Efficient Convolutional Neural Networks with Lego Filters Run python train.py You c
Warren - Stock Price Predictor
Web app to predict closing stock prices in real time using Facebook's Prophet time series algorithm with a multi-variate, single-step time series forecasting strategy.
Code for "Generative adversarial networks for reconstructing natural images from brain activity".
Reconstruct handwritten characters from brains using GANs Example code for the paper "Generative adversarial networks for reconstructing natural image
The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22
SiamTPN Introduction This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer in
Offical implementation for "Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation".
Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation (NeurIPS 2021) by Qiming Hu, Xiaojie Guo. Dependencies P
CVNets: A library for training computer vision networks
CVNets: A library for training computer vision networks This repository contains the source code for training computer vision models. Specifically, it
[NeurIPS2021] Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks
Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks Code for NeurIPS 2021 Paper "Exploring Architectural Ingredients of A
[SIGGRAPH Asia 2021] DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning.
DeepVecFont This is the homepage for "DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning". Yizhi Wang and Zhouhui Lian. WI
[SIGGRAPH Asia 2021] DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning.
DeepVecFont This is the homepage for "DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning". Yizhi Wang and Zhouhui Lian. WI
Meta graph convolutional neural network-assisted resilient swarm communications
Resilient UAV Swarm Communications with Graph Convolutional Neural Network This repository contains the source codes of Resilient UAV Swarm Communicat
For auto aligning, cropping, and scaling HR and LR images for training image based neural networks
ImgAlign For auto aligning, cropping, and scaling HR and LR images for training image based neural networks Usage Make sure OpenCV is installed, 'pip
Implements Stacked-RNN in numpy and torch with manual forward and backward functions
Recurrent Neural Networks Implements simple recurrent network and a stacked recurrent network in numpy and torch respectively. Both flavours implement
A simple project which is a ecm to found a good way to provide a path to img_dir in gooey
ECM to find a good way for img_dir Path in Gooey This code is just an ECM to find a good way to indicate a path of image in image_dir variable. We loo
Understanding Convolutional Neural Networks from Theoretical Perspective via Volterra Convolution
nnvolterra Run Code Compile first: make compile Run all codes: make all Test xconv: make npxconv_test MNIST dataset needs to be downloaded, converted
Offical implementation for "Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation".
Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation (NeurIPS 2021) by Qiming Hu, Xiaojie Guo. Dependencies P
CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP
CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP Andreas Fürst* 1, Elisabeth Rumetshofer* 1, Viet Tran1, Hubert Ramsauer1, Fei Tang3, Joh
MEND: Model Editing Networks using Gradient Decomposition
MEND: Model Editing Networks using Gradient Decomposition Setup Environment This codebase uses Python 3.7.9. Other versions may work as well. Create a
It's a simple tool for test vulnerability Apache Path Traversal
SimplesApachePathTraversal Simples Apache Path Traversal It's a simple tool for test vulnerability Apache Path Traversal https://blog.mrcl0wn.com/2021
Official implementation of CVPR2020 paper "Deep Generative Model for Robust Imbalance Classification"
Deep Generative Model for Robust Imbalance Classification Deep Generative Model for Robust Imbalance Classification Xinyue Wang, Yilin Lyu, Liping Jin
Website which uses Deep Learning to generate horror stories.
Creepypasta - Text Generator Website which uses Deep Learning to generate horror stories. View Demo · View Website Repo · Report Bug · Request Feature
The end-to-end platform for building voice products at scale
Picovoice Made in Vancouver, Canada by Picovoice Picovoice is the end-to-end platform for building voice products on your terms. Unlike Alexa and Goog
A MNIST-like fashion product database. Benchmark
Fashion-MNIST Table of Contents Why we made Fashion-MNIST Get the Data Usage Benchmark Visualization Contributing Contact Citing Fashion-MNIST License
A plug-and-play library for neural networks written in Python
A plug-and-play library for neural networks written in Python!
Deep learning library for solving differential equations and more
DeepXDE Voting on whether we should have a Slack channel for discussion. DeepXDE is a library for scientific machine learning. Use DeepXDE if you need
A Real-Time-Strategy game for Deep Learning research
Description DeepRTS is a high-performance Real-TIme strategy game for Reinforcement Learning research. It is written in C++ for performance, but provi
PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks
Code for the paper "PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks" (ICPR 2020)
LSTMs (Long Short Term Memory) RNN for prediction of price trends
Price Prediction with Recurrent Neural Networks LSTMs BTC-USD price prediction with deep learning algorithm. Artificial Neural Networks specifically L
Python Implementation of algorithms in Graph Mining, e.g., Recommendation, Collaborative Filtering, Community Detection, Spectral Clustering, Modularity Maximization, co-authorship networks.
Graph Mining Author: Jiayi Chen Time: April 2021 Implemented Algorithms: Network: Scrabing Data, Network Construbtion and Network Measurement (e.g., P
RealTime Emotion Recognizer for Machine Learning Study Jam's demo
Emotion recognizer Table of contents Clone project Dataset Install dependencies Main program Demo 1. Clone project git clone https://github.com/GDSC20
Pytorch implementation of "Get To The Point: Summarization with Pointer-Generator Networks"
About this repository This repo contains an Pytorch implementation for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Netwo
Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative adversarial networks (GAN)
Flickr-Faces-HQ Dataset (FFHQ) Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative
Connectionist Temporal Classification (CTC) decoding algorithms: best path, beam search, lexicon search, prefix search, and token passing. Implemented in Python.
CTC Decoding Algorithms Update 2021: installable Python package Python implementation of some common Connectionist Temporal Classification (CTC) decod
Implements the training, testing and editing tools for "Pluralistic Image Completion"
Pluralistic Image Completion ArXiv | Project Page | Online Demo | Video(demo) This repository implements the training, testing and editing tools for "
Vector AI — A platform for building vector based applications. Encode, query and analyse data using vectors.
Vector AI is a framework designed to make the process of building production grade vector based applications as quickly and easily as possible. Create
PyTorch image models, scripts, pretrained weights -- ResNet, ResNeXT, EfficientNet, EfficientNetV2, NFNet, Vision Transformer, MixNet, MobileNet-V3/V2, RegNet, DPN, CSPNet, and more
PyTorch Image Models Sponsors What's New Introduction Models Features Results Getting Started (Documentation) Train, Validation, Inference Scripts Awe
This is a collection of simple PyTorch implementations of neural networks and related algorithms. These implementations are documented with explanations,
labml.ai Deep Learning Paper Implementations This is a collection of simple PyTorch implementations of neural networks and related algorithms. These i
DeepMind's software stack for physics-based simulation and Reinforcement Learning environments, using MuJoCo.
dm_control: DeepMind Infrastructure for Physics-Based Simulation. DeepMind's software stack for physics-based simulation and Reinforcement Learning en
High-quality implementations of standard and SOTA methods on a variety of tasks.
Uncertainty Baselines The goal of Uncertainty Baselines is to provide a template for researchers to build on. The baselines can be a starting point fo
Code Repository for Liquid Time-Constant Networks (LTCs)
Liquid time-constant Networks (LTCs) [Update] A Pytorch version is added in our sister repository: https://github.com/mlech26l/keras-ncp This is the o
Compare neural networks by their feature similarity
PyTorch Model Compare A tiny package to compare two neural networks in PyTorch. There are many ways to compare two neural networks, but one robust and
Official Code for "Non-deep Networks"
Non-deep Networks arXiv:2110.07641 Ankit Goyal, Alexey Bochkovskiy, Jia Deng, Vladlen Koltun Overview: Depth is the hallmark of DNNs. But more depth m
Codebase for Time-series Generative Adversarial Networks (TimeGAN)
Codebase for Time-series Generative Adversarial Networks (TimeGAN)
Pytorch implementation of the paper Time-series Generative Adversarial Networks
TimeGAN-pytorch Pytorch implementation of the paper Time-series Generative Adversarial Networks presented at NeurIPS'19. Jinsung Yoon, Daniel Jarrett
Identify the emotion of multiple speakers in an Audio Segment
MevonAI - Speech Emotion Recognition Identify the emotion of multiple speakers in a Audio Segment Report Bug · Request Feature Try the Demo Here Table
Code accompanying "Evolving spiking neuron cellular automata and networks to emulate in vitro neuronal activity," accepted to IEEE SSCI ICES 2021
Evolving-spiking-neuron-cellular-automata-and-networks-to-emulate-in-vitro-neuronal-activity Code accompanying "Evolving spiking neuron cellular autom
Official PyTorch Implementation of Learning Architectures for Binary Networks
Learning Architectures for Binary Networks An Pytorch Implementation of the paper Learning Architectures for Binary Networks (BNAS) (ECCV 2020) If you