2325 Repositories
Python graph-attention-model Libraries
On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks
On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks We provide the code (in PyTorch) and datasets for our paper "On Size-Orient
Implementation of a memory efficient multi-head attention as proposed in the paper, "Self-attention Does Not Need O(n²) Memory"
Memory Efficient Attention Pytorch Implementation of a memory efficient multi-head attention as proposed in the paper, Self-attention Does Not Need O(
A simple Streamlit App to classify swahili news into different categories.
Swahili News Classifier Streamlit App A simple app to classify swahili news into different categories. Installation Install all streamlit requirements
Using this repository you can send mails to multiple recipients.Was created in support of Ukraine, to turn society`s attention to war.
mails-in-support-of-UA Using this repository you can send mails to multiple recipients.Was created in support of Ukraine, to turn society`s attention
Tensorflow 1.13.X implementation for our NN paper: Wei Xia, Sen Wang, Ming Yang, Quanxue Gao, Jungong Han, Xinbo Gao: Multi-view graph embedding clustering network: Joint self-supervision and block diagonal representation. Neural Networks 145: 1-9 (2022)
Multi-view graph embedding clustering network: Joint self-supervision and block diagonal representation Simple implementation of our paper MVGC. The d
Automatically generate GitHub activity!
Commit Bot Automatically generate GitHub activity! We've all wanted to be the developer that commits every day, but that requires a lot of work. Let's
PyTorch Implementation of DiffGAN-TTS: High-Fidelity and Efficient Text-to-Speech with Denoising Diffusion GANs
DiffGAN-TTS - PyTorch Implementation PyTorch implementation of DiffGAN-TTS: High
Diabetes-Feature-Engineering - A machine learning model that can predict whether people have diabetes when their characteristics are specified
Diabetes-Feature-Engineering Aim Developing a machine learning model that can pr
Transformers-regression - Regression Bugs Are In Your Model! Measuring, Reducing and Analyzing Regressions In NLP Model Updates
Regression Free Model Update Code for the paper: Regression Bugs Are In Your Mod
Job-Recommend-Competition - Vectorwise Interpretable Attentions for Multimodal Tabular Data
SiD - Simple Deep Model Vectorwise Interpretable Attentions for Multimodal Tabul
Lightweight mmm - Lightweight (Bayesian) Media Mix Model
Lightweight (Bayesian) Media Mix Model This is not an official Google product. L
SUPERVISED-CONTRASTIVE-LEARNING-FOR-PRE-TRAINED-LANGUAGE-MODEL-FINE-TUNING - The Facebook paper about fine tuning RoBERTa with contrastive loss
"# SUPERVISED-CONTRASTIVE-LEARNING-FOR-PRE-TRAINED-LANGUAGE-MODEL-FINE-TUNING" i
LotteryBuyPredictionWebApp - Lottery Purchase Prediction Model
Lottery Purchase Prediction Model Objective and Goal Predict the lottery type th
OpenDelta - An Open-Source Framework for Paramter Efficient Tuning.
OpenDelta is a toolkit for parameter efficient methods (we dub it as delta tuning), by which users could flexibly assign (or add) a small amount parameters to update while keeping the most paramters frozen. By using OpenDelta, users could easily implement prefix-tuning, adapters, Lora, or any other types of delta tuning with preferred PTMs.
A model to predict steering torque fully end-to-end
torque_model The torque model is a spiritual successor to op-smart-torque, which was a project to train a neural network to control a car's steering f
This is the code repository for LRM Stochastic watershed model.
LRM-Squannacook Input data for generating stochastic streamflows are observed and simulated timeseries of streamflow. their format needs to be CSV wit
SGMC: Spectral Graph Matrix Completion
SGMC: Spectral Graph Matrix Completion Code for AAAI21 paper "Scalable and Explainable 1-Bit Matrix Completion via Graph Signal Learning". Data Format
GraphLily: A Graph Linear Algebra Overlay on HBM-Equipped FPGAs
GraphLily: A Graph Linear Algebra Overlay on HBM-Equipped FPGAs GraphLily is the first FPGA overlay for graph processing. GraphLily supports a rich se
Over-the-Air Ensemble Inference with Model Privacy
Over-the-Air Ensemble Inference with Model Privacy This repository contains simulations for our private ensemble inference method. Installation Instal
Kglab - an abstraction layer in Python for building knowledge graphs
Graph Data Science: an abstraction layer in Python for building knowledge graphs, integrated with popular graph libraries – atop Pandas, RDFlib, pySHACL, RAPIDS, NetworkX, iGraph, PyVis, pslpython, pyarrow, etc.
Using deep learning model to detect breast cancer.
Breast-Cancer-Detection Breast cancer is the most frequent cancer among women, with around one in every 19 women at risk. The number of cases of breas
ONNX-PackNet-SfM: Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX
Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX
Brain tumor detection using CNN (InceptionResNetV2 Model)
Brain-Tumor-Detection Building a detection model using a convolutional neural network in Tensorflow & Keras. Used brain MRI images. InceptionResNetV2
3D Model files and source code for rotating turntable. Raspberry Pi, DC servo and PWM modulator required.
3DSimpleTurntable 3D Model files and source code for rotating turntable. Raspberry Pi, DC servo and PWM modulator required. Preview Construction Print
Tensorflow implementation of our method: "Triangle Graph Interest Network for Click-through Rate Prediction".
TGIN Tensorflow implementation of our method: "Triangle Graph Interest Network for Click-through Rate Prediction". Files in the folder dataset/ electr
Learned model to estimate number of distinct values (NDV) of a population using a small sample.
Learned NDV estimator Learned model to estimate number of distinct values (NDV) of a population using a small sample. The model approximates the maxim
PyTorch-Geometric Implementation of MarkovGNN: Graph Neural Networks on Markov Diffusion
MarkovGNN This is the official PyTorch-Geometric implementation of MarkovGNN paper under the title "MarkovGNN: Graph Neural Networks on Markov Diffusi
TorchMD-Net provides state-of-the-art graph neural networks and equivariant transformer neural networks potentials for learning molecular potentials
TorchMD-net TorchMD-Net provides state-of-the-art graph neural networks and equivariant transformer neural networks potentials for learning molecular
This repository contains the code for: RerrFact model for SciVer shared task
RerrFact This repository contains the code for: RerrFact model for SciVer shared task. Setup for Inference 1. Download SciFact database Download the S
EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction
EquiBind: geometric deep learning for fast predictions of the 3D structure in which a small molecule binds to a protein
Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations
TopClus The source code used for Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations, published in WWW 2022. Requ
BASH - Biomechanical Animated Skinned Human
We developed a method animating a statistical 3D human model for biomechanical analysis to increase accessibility for non-experts, like patients, athletes, or designers.
From Canonical Correlation Analysis to Self-supervised Graph Neural Networks
Code for CCA-SSG model proposed in the NeurIPS 2021 paper From Canonical Correlation Analysis to Self-supervised Graph Neural Networks.
BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents
BROS (BERT Relying On Spatiality) is a pre-trained language model focusing on text and layout for better key information extraction from documents. Given the OCR results of the document image, which are text and bounding box pairs, it can perform various key information extraction tasks, such as extracting an ordered item list from receipts
PyTorch implementations of the NeRF model described in "NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis"
PyTorch NeRF and pixelNeRF NeRF: Tiny NeRF: pixelNeRF: This repository contains minimal PyTorch implementations of the NeRF model described in "NeRF:
Price Prediction model is used to develop an LSTM model to predict the future market price of Bitcoin and Ethereum.
Price Prediction model is used to develop an LSTM model to predict the future market price of Bitcoin and Ethereum.
Community and sentiment analysis based on tweets
The project has set itself the goal of analyzing the thoughts and interaction of Italian users through the social posts expressed through the Twitter platform on the day of the entry into force of the new measures. In particular, we want to research the reference hubs present on the network, but also the sentiment and emotions of peoples with respect to the new limitations.
PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning"
PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning".
To build a regression model to predict the concrete compressive strength based on the different features in the training data.
Cement-Strength-Prediction Problem Statement To build a regression model to predict the concrete compressive strength based on the different features
Artificial Neural network regression model to predict the energy output in a combined cycle power plant.
Energy_Output_Predictor Artificial Neural network regression model to predict the energy output in a combined cycle power plant. Abstract Energy outpu
A custom DeepStack model that has been trained detecting ONLY the USPS logo
This repository provides a custom DeepStack model that has been trained detecting ONLY the USPS logo. This was created after I discovered that the Deepstack OpenLogo custom model I was using did not contain USPS.
End-to-end image captioning with EfficientNet-b3 + LSTM with Attention
Image captioning End-to-end image captioning with EfficientNet-b3 + LSTM with Attention Model is seq2seq model. In the encoder pretrained EfficientNet
Rank-One Model Editing for Locating and Editing Factual Knowledge in GPT
Rank-One Model Editing (ROME) This repository provides an implementation of Rank-One Model Editing (ROME) on auto-regressive transformers (GPU-only).
Large-scale Knowledge Graph Construction with Prompting
Large-scale Knowledge Graph Construction with Prompting across tasks (predictive and generative), and modalities (language, image, vision + language, etc.)
FIRA: Fine-Grained Graph-Based Code Change Representation for Automated Commit Message Generation
FIRA is a learning-based commit message generation approach, which first represents code changes via fine-grained graphs and then learns to generate commit messages automatically.
PyTorch implementation of the ExORL: Exploratory Data for Offline Reinforcement Learning
ExORL: Exploratory Data for Offline Reinforcement Learning This is an original PyTorch implementation of the ExORL framework from Don't Change the Alg
CBO uses its Capital Tax model (CBO-CapTax) to estimate the effects of federal taxes on capital income from new investment
CBO’s CapTax Model CBO uses its Capital Tax model (CBO-CapTax) to estimate the effects of federal taxes on capital income from new investment. Specifi
The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding.
SuperGen The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding. Requirements Before running, you
Automatization of BoxPlot graph usin Python MatPlotLib and Excel
BoxPlotGraphAutomation Automatization of BoxPlot graph usin Python / Excel. This file is an automation of BoxPlot-Graph using python graph library mat
A Graph Learning library for Humans
A Graph Learning library for Humans These novel algorithms include but are not limited to: A graph construction and graph searching class can be found
HAIS_2GNN: 3D Visual Grounding with Graph and Attention
HAIS_2GNN: 3D Visual Grounding with Graph and Attention This repository is for the HAIS_2GNN research project. Tao Gu, Yue Chen Introduction The motiv
Easily benchmark PyTorch model FLOPs, latency, throughput, max allocated memory and energy consumption
⏱ pytorch-benchmark Easily benchmark model inference FLOPs, latency, throughput, max allocated memory and energy consumption Install pip install pytor
A minimalist tool to display a network graph.
A tool to get a minimalist view of any architecture This tool has only be tested with the models included in this repo. Therefore, I can't guarantee t
Customised to detect objects automatically by a given model file(onnx)
LabelImg LabelImg is a graphical image annotation tool. It is written in Python and uses Qt for its graphical interface. Annotations are saved as XML
Code for ML, domain generation, graph generation of ABC dataset
This is the repository for codes for ML, domain generation, graph generation of Asymmetric Buckling Columns (ABC) dataset in the paper "Learning Mechanically Driven Emergent Behavior with Message Passing Neural Networks".
Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model
Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model About This repository contains the code to replicate the syn
Graph Coloring - Weighted Vertex Coloring Problem
Graph Coloring - Weighted Vertex Coloring Problem This project proposes several local searches and an MCTS algorithm for the weighted vertex coloring
DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation
DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation By Qing Xu, Wenting Duan and Na He Requirements pytorch==1.1
Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces"
Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces" This repo contains the implementation of GEBO algorithm.
Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions"
Graph Convolution Simulator (GCS) Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions" Requirements: PyTor
Nested cross-validation is necessary to avoid biased model performance in embedded feature selection in high-dimensional data with tiny sample sizes
Pruner for nested cross-validation - Sphinx-Doc Nested cross-validation is necessary to avoid biased model performance in embedded feature selection i
This repository provides a PyTorch implementation and model weights for HCSC (Hierarchical Contrastive Selective Coding)
HCSC: Hierarchical Contrastive Selective Coding This repository provides a PyTorch implementation and model weights for HCSC (Hierarchical Contrastive
A model which classifies reviews as positive or negative.
SentiMent Analysis In this project I built a model to classify movie reviews fromn the IMDB dataset of 50K reviews. WordtoVec : Neural networks only w
Project in which we modelise an Among Us problem using graph theories.
Python-AmongUsProblem Project in which we modelise an Among Us problem using graph theories. The rules are as following: Total of 100 players 10 playe
Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling
TGraM Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling, Qibin He, Xian Sun, Zhiyuan Yan, Beibei Li, Kun Fu Abstract Rece
Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron
Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron
To create a deep learning model which can explain the content of an image in the form of speech through caption generation with attention mechanism on Flickr8K dataset.
To create a deep learning model which can explain the content of an image in the form of speech through caption generation with attention mechanism on Flickr8K dataset.
A pure PyTorch implementation of the loss described in "Online Segment to Segment Neural Transduction"
ssnt-loss ℹ️ This is a WIP project. the implementation is still being tested. A pure PyTorch implementation of the loss described in "Online Segment t
CRF-RNN for Semantic Image Segmentation - PyTorch version
This repository contains the official PyTorch implementation of the "CRF-RNN" semantic image segmentation method, published in the ICCV 2015
Python inverse kinematics for your robot model based on Pinocchio.
Python inverse kinematics for your robot model based on Pinocchio.
An implementation of IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification
IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification The repostiory consists of the code, results and data set links for
This machine learning model was developed for House Prices
This machine learning model was developed for House Prices - Advanced Regression Techniques competition in Kaggle by using several machine learning models such as Random Forest, XGBoost and LightGBM.
A PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detection.
R-YOLOv4 This is a PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detect
ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX
ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX
Expense Tracker is a very good tool to keep track of your expenseditures and the total money you saved.
Expense Tracker is a very good tool to keep track of your expenseditures and the total money you saved.
Pytorch implementation of the paper "Enhancing Content Preservation in Text Style Transfer Using Reverse Attention and Conditional Layer Normalization"
Pytorch implementation of the paper "Enhancing Content Preservation in Text Style Transfer Using Reverse Attention and Conditional Layer Normalization"
Evaluate on three different ML model for feature selection using Breast cancer data.
Anomaly-detection-Feature-Selection Evaluate on three different ML model for feature selection using Breast cancer data. ML models: SVM, KNN and MLP.
Breast cancer is been classified into benign tumour and malignant tumour.
Breast cancer is been classified into benign tumour and malignant tumour. Logistic regression is applied in this model.
Breast Cancer Classification Model is applied on a different dataset
Breast Cancer Classification Model is applied on a different dataset
ANN model for prediction a spatio-temporal distribution of supercooled liquid in mixed-phase clouds using Doppler cloud radar spectra.
VOODOO Revealing supercooled liquid beyond lidar attenuation Explore the docs » Report Bug · Request Feature Table of Contents About The Project Built
LabGraph is a a Python-first framework used to build sophisticated research systems with real-time streaming, graph API, and parallelism.
LabGraph is a a Python-first framework used to build sophisticated research systems with real-time streaming, graph API, and parallelism.
Bert4rec for news Recommendation
News-Recommendation-system-using-Bert4Rec-model Bert4rec for news Recommendation
Sub-tomogram-Detection - Deep learning based model for Cyro ET Sub-tomogram-Detection
Deep learning based model for Cyro ET Sub-tomogram-Detection High degree of stru
This is a model made out of Neural Network specifically a Convolutional Neural Network model
This is a model made out of Neural Network specifically a Convolutional Neural Network model. This was done with a pre-built dataset from the tensorflow and keras packages. There are other alternative libraries that can be used for this purpose, one of which is the PyTorch library.
Implementation of the SUMO (Slim U-Net trained on MODA) model
SUMO - Slim U-Net trained on MODA Implementation of the SUMO (Slim U-Net trained on MODA) model as described in: TODO: add reference to paper once ava
RefineGNN - Iterative refinement graph neural network for antibody sequence-structure co-design (RefineGNN)
Iterative refinement graph neural network for antibody sequence-structure co-des
Training a deep learning model on the noisy CIFAR dataset
Training-a-deep-learning-model-on-the-noisy-CIFAR-dataset This repository contai
A machine learning model for Covid case prediction
CovidcasePrediction A machine learning model for Covid case prediction Problem Statement Using regression algorithms we can able to track the active c
GraphNLI: A Graph-based Natural Language Inference Model for Polarity Prediction in Online Debates
GraphNLI: A Graph-based Natural Language Inference Model for Polarity Prediction in Online Debates Vibhor Agarwal, Sagar Joglekar, Anthony P. Young an
The aim is to extract timeseries water level 2D information for any designed boundaries within the EasyGSH model domain
bct_file_generator_for_EasyGSH The aim is to extract timeseries water level 2D information for any designed boundaries within the EasyGSH model domain
The NewSHead dataset is a multi-doc headline dataset used in NHNet for training a headline summarization model.
This repository contains the raw dataset used in NHNet [1] for the task of News Story Headline Generation. The code of data processing and training is available under Tensorflow Models - NHNet.
This repository contains the official code of the paper Equivariant Subgraph Aggregation Networks (ICLR 2022)
Equivariant Subgraph Aggregation Networks (ESAN) This repository contains the official code of the paper Equivariant Subgraph Aggregation Networks (IC
Hatchet is a Python-based library that allows Pandas dataframes to be indexed by structured tree and graph data.
Hatchet Hatchet is a Python-based library that allows Pandas dataframes to be indexed by structured tree and graph data. It is intended for analyzing
Used for data processing in machine learning, and help us to construct ML model more easily from scratch
Used for data processing in machine learning, and help us to construct ML model more easily from scratch. Can be used in linear model, logistic regression model, and decision tree.
DIR-GNN - Discovering Invariant Rationales for Graph Neural Networks
DIR-GNN "Discovering Invariant Rationales for Graph Neural Networks" (ICLR 2022)
Espial is an engine for automated organization and discovery of personal knowledge
Live Demo (currently not running, on it) Espial is an engine for automated organization and discovery in knowledge bases. It can be adapted to run wit
CLNTM - Contrastive Learning for Neural Topic Model
Contrastive Learning for Neural Topic Model This repository contains the impleme
A Microsoft Azure Web App project named Covid 19 Predictor using Machine learning Model
A Microsoft Azure Web App project named Covid 19 Predictor using Machine learning Model (Random Forest Classifier Model ) that helps the user to identify whether someone is showing positive Covid symptoms or not by simply inputting certain values like oxygen level , breath rate , age, Vaccination done or not etc. with the help of kaggle database.
An implementation of the "Attention is all you need" paper without extra bells and whistles, or difficult syntax
Simple Transformer An implementation of the "Attention is all you need" paper without extra bells and whistles, or difficult syntax. Note: The only ex
Create a machine learning model which will predict if the mortgage will be approved or not based on 5 variables
Mortgage-Application-Analysis Create a machine learning model which will predict if the mortgage will be approved or not based on 5 variables: age, in