1839 Repositories
Python graph-convolutional-networks Libraries
Pre-training of Graph Augmented Transformers for Medication Recommendation
G-Bert Pre-training of Graph Augmented Transformers for Medication Recommendation Intro G-Bert combined the power of Graph Neural Networks and BERT (B
Code for KDD'20 "Generative Pre-Training of Graph Neural Networks"
GPT-GNN: Generative Pre-Training of Graph Neural Networks GPT-GNN is a pre-training framework to initialize GNNs by generative pre-training. It can be
Official PyTorch Implementation of "Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs". NeurIPS 2020.
Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs This repository is the implementation of SELAR. Dasol Hwang* , Jinyoung Pa
Deeper insights into graph convolutional networks for semi-supervised learning
deeper_insights_into_GCNs Deeper insights into graph convolutional networks for semi-supervised learning References data and utils.py come from Implem
Reference Code for AAAI-20 paper "Multi-Stage Self-Supervised Learning for Graph Convolutional Networks on Graphs with Few Labels"
Reference Code for AAAI-20 paper "Multi-Stage Self-Supervised Learning for Graph Convolutional Networks on Graphs with Few Labels" Please refer to htt
code for "Self-supervised edge features for improved Graph Neural Network training", arxivlink
Self-supervised edge features for improved Graph Neural Network training Data availability: Here is a link to the raw data for the organoids dataset.
[ICML 2020] DrRepair: Learning to Repair Programs from Error Messages
DrRepair: Learning to Repair Programs from Error Messages This repo provides the source code & data of our paper: Graph-based, Self-Supervised Program
Code for hyperboloid embeddings for knowledge graph entities
Implementation for the papers: Self-Supervised Hyperboloid Representations from Logical Queries over Knowledge Graphs, Nurendra Choudhary, Nikhil Rao,
Official PyTorch implementation of the paper "Self-Supervised Relational Reasoning for Representation Learning", NeurIPS 2020 Spotlight.
Official PyTorch implementation of the paper: "Self-Supervised Relational Reasoning for Representation Learning" (2020), Patacchiola, M., and Storkey,
AdaFocus V2: End-to-End Training of Spatial Dynamic Networks for Video Recognition
AdaFocusV2 This repo contains the official code and pre-trained models for AdaFo
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p
The code for SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network.
SAG-DTA The code is the implementation for the paper 'SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network'. Requirements py
PyTorch Implementation for Deep Metric Learning Pipelines
Easily Extendable Basic Deep Metric Learning Pipeline Karsten Roth ([email protected]), Biagio Brattoli ([email protected]) When using thi
Adversarial Graph Representation Adaptation for Cross-Domain Facial Expression Recognition (AGRA, ACM 2020, Oral)
Cross Domain Facial Expression Recognition Benchmark Implementation of papers: Cross-Domain Facial Expression Recognition: A Unified Evaluation Benchm
Implementation of Memory-Efficient Neural Networks with Multi-Level Generation, ICCV 2021
Memory-Efficient Multi-Level In-Situ Generation (MLG) By Jiaqi Gu, Hanqing Zhu, Chenghao Feng, Mingjie Liu, Zixuan Jiang, Ray T. Chen and David Z. Pan
Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning
Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning Yansong Tang *, Zhenyu Jiang *, Zhenda Xie *, Yue
Characterizing possible failure modes in physics-informed neural networks.
Characterizing possible failure modes in physics-informed neural networks This repository contains the PyTorch source code for the experiments in the
Tensor-Based Quantum Machine Learning
TensorLy_Quantum TensorLy-Quantum is a Python library for Tensor-Based Quantum Machine Learning that builds on top of TensorLy and PyTorch. Website: h
The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding"
AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:
A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks
A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks Please follow Faster R-CNN and DAF to complete the enviro
Build a medical knowledge graph based on Unified Language Medical System (UMLS)
UMLS-Graph Build a medical knowledge graph based on Unified Language Medical System (UMLS) Requisite Install MySQL Server 5.6 and import UMLS data int
MS Graph API authentication example with Fast API
MS Graph API authentication example with Fast API What it is & does This is a simple python service/webapp, using FastAPI with server side rendering,
LynxKite: a complete graph data science platform for very large graphs and other datasets.
LynxKite is a complete graph data science platform for very large graphs and other datasets. It seamlessly combines the benefits of a friendly graphical interface and a powerful Python API.
Source code of SIGIR2021 Paper 'One Chatbot Per Person: Creating Personalized Chatbots based on Implicit Profiles'
DHAP Source code of SIGIR2021 Long Paper: One Chatbot Per Person: Creating Personalized Chatbots based on Implicit User Profiles . Preinstallation Fir
Spaghetti: an open-source Python library for the analysis of network-based spatial data
pysal/spaghetti SPAtial GrapHs: nETworks, Topology, & Inference Spaghetti is an open-source Python library for the analysis of network-based spatial d
A visualization tool to show a TensorFlow's graph like TensorBoard
tfgraphviz tfgraphviz is a module to visualize a TensorFlow's data flow graph like TensorBoard using Graphviz. tfgraphviz enables to provide a visuali
An End-to-End Machine Learning Library to Optimize AUC (AUROC, AUPRC).
Logo by Zhuoning Yuan LibAUC: A Machine Learning Library for AUC Optimization Website | Updates | Installation | Tutorial | Research | Github LibAUC a
Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph
Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph This repository provides a pipeline to create a knowledge graph from ra
ttslearn: Library for Pythonで学ぶ音声合成 (Text-to-speech with Python)
ttslearn: Library for Pythonで学ぶ音声合成 (Text-to-speech with Python) 日本語は以下に続きます (Japanese follows) English: This book is written in Japanese and primaril
🐍PyNode Next allows you to easily create beautiful graph visualisations and animations
PyNode Next A complete rewrite of PyNode for the modern era. Up to five times faster than the original PyNode. PyNode Next allows you to easily create
Example Code Notebooks for Data Visualization in Python
This repository contains sample code scripts for creating awesome data visualizations from scratch using different python libraries (such as matplotli
Quick insights from Zoom meeting transcripts using Graph + NLP
Transcript Analysis - Graph + NLP This program extracts insights from Zoom Meeting Transcripts (.vtt) using TigerGraph and NLTK. In order to run this
Random Directed Acyclic Graph Generator
DAG_Generator Random Directed Acyclic Graph Generator verison1.0 简介 工作流通常由DAG(有向无环图)来定义,其中每个计算任务$T_i$由一个顶点(node,task,vertex)表示。同时,任务之间的每个数据或控制依赖性由一条加权
Code for MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks
MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks This is the code for the paper: MentorNet: Learning Data-Driven Curriculum fo
Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes, ICCV 2017
AdaptationSeg This is the Python reference implementation of AdaptionSeg proposed in "Curriculum Domain Adaptation for Semantic Segmentation of Urban
ONNX Runtime: cross-platform, high performance ML inferencing and training accelerator
ONNX Runtime is a cross-platform inference and training machine-learning accelerator. ONNX Runtime inference can enable faster customer experiences an
PyTorch implementation of Super SloMo by Jiang et al.
Super-SloMo PyTorch implementation of "Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation" by Jiang H., Sun
Source code for Fathony, Sahu, Willmott, & Kolter, "Multiplicative Filter Networks", ICLR 2021.
Multiplicative Filter Networks This repository contains a PyTorch MFN implementation and code to perform & reproduce experiments from the ICLR 2021 pa
Machine learning algorithms for many-body quantum systems
NetKet NetKet is an open-source project delivering cutting-edge methods for the study of many-body quantum systems with artificial neural networks and
StyleSwin: Transformer-based GAN for High-resolution Image Generation
StyleSwin This repo is the official implementation of "StyleSwin: Transformer-based GAN for High-resolution Image Generation". By Bowen Zhang, Shuyang
Code for "Multimodal Trajectory Prediction Conditioned on Lane-Graph Traversals," CoRL 2021.
Multimodal Trajectory Prediction Conditioned on Lane-Graph Traversals This repository contains code for "Multimodal trajectory prediction conditioned
Source Code for AAAI 2022 paper "Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching"
Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching This repository is an official implementation of
NeoInterface - Neo4j made easy for Python programmers!
Neointerface - Neo4j made easy for Python programmers! A Python interface to use the Neo4j graph database, and simplify its use. class NeoInterface: C
Official code for the publication "HyFactor: Hydrogen-count labelled graph-based defactorization Autoencoder".
HyFactor Graph-based architectures are becoming increasingly popular as a tool for structure generation. Here, we introduce a novel open-source archit
A Japanese tokenizer based on recurrent neural networks
Nagisa is a python module for Japanese word segmentation/POS-tagging. It is designed to be a simple and easy-to-use tool. This tool has the following
Fastest Gephi's ForceAtlas2 graph layout algorithm implemented for Python and NetworkX
ForceAtlas2 for Python A port of Gephi's Force Atlas 2 layout algorithm to Python 2 and Python 3 (with a wrapper for NetworkX and igraph). This is the
A Python wrapper API for operating and working with the Neo4j Graph Data Science (GDS) library
gdsclient NOTE: This is a work in progress and many GDS features are known to be missing or not working properly. This repo hosts the sources for gdsc
A Python wrapper API for operating and working with the Neo4j Graph Data Science (GDS) library
gdsclient This repo hosts the sources for gdsclient, a Python wrapper API for operating and working with the Neo4j Graph Data Science (GDS) library. g
PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning"
deepGCFX PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning" Pr
Source Code for AAAI 2022 paper "Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching"
Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching This repository is an official implementation of
Header-only library for using Keras models in C++.
frugally-deep Use Keras models in C++ with ease Table of contents Introduction Usage Performance Requirements and Installation FAQ Introduction Would
PyTorch implementation of HDN(Homography Decomposition Networks) for planar object tracking
Homography Decomposition Networks for Planar Object Tracking This project is the offical PyTorch implementation of HDN(Homography Decomposition Networ
CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network)
CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network) This is PneumoniaDiagnose, an artificially intellig
Code for 2021 NeurIPS --- Towards Multi-Grained Explainability for Graph Neural Networks
ReFine: Multi-Grained Explainability for GNNs This is the official code for Towards Multi-Grained Explainability for Graph Neural Networks (NeurIPS 20
Tensorflow Tutorials using Jupyter Notebook
Tensorflow Tutorials using Jupyter Notebook TensorFlow tutorials written in Python (of course) with Jupyter Notebook. Tried to explain as kindly as po
Human Activity Recognition example using TensorFlow on smartphone sensors dataset and an LSTM RNN. Classifying the type of movement amongst six activity categories - Guillaume Chevalier
LSTMs for Human Activity Recognition Human Activity Recognition (HAR) using smartphones dataset and an LSTM RNN. Classifying the type of movement amon
TensorFlow (Python API) implementation of Neural Style
neural-style-tf This is a TensorFlow implementation of several techniques described in the papers: Image Style Transfer Using Convolutional Neural Net
A deep learning network built with TensorFlow and Keras to classify gender and estimate age.
Convolutional Neural Network (CNN). This repository contains a source code of a deep learning network built with TensorFlow and Keras to classify gend
Graph Self-Supervised Learning for Optoelectronic Properties of Organic Semiconductors
SSL_OSC Graph Self-Supervised Learning for Optoelectronic Properties of Organic Semiconductors
A PyTorch based deep learning library for drug pair scoring.
Documentation | External Resources | Datasets | Examples ChemicalX is a deep learning library for drug-drug interaction, polypharmacy side effect and
Deep Reinforcement Learning for Keras.
Deep Reinforcement Learning for Keras What is it? keras-rl implements some state-of-the art deep reinforcement learning algorithms in Python and seaml
[CVPR 2020] Local Class-Specific and Global Image-Level Generative Adversarial Networks for Semantic-Guided Scene Generation
Contents Local and Global GAN Cross-View Image Translation Semantic Image Synthesis Acknowledgments Related Projects Citation Contributions Collaborat
O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis
O-CNN This repository contains the implementation of our papers related with O-CNN. The code is released under the MIT license. O-CNN: Octree-based Co
[ECCV'20] Convolutional Occupancy Networks
Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page | Blog Post This repository contains the implementation o
C3DPO - Canonical 3D Pose Networks for Non-rigid Structure From Motion.
C3DPO: Canonical 3D Pose Networks for Non-Rigid Structure From Motion By: David Novotny, Nikhila Ravi, Benjamin Graham, Natalia Neverova, Andrea Vedal
Volumetric Correspondence Networks for Optical Flow, NeurIPS 2019.
VCN: Volumetric correspondence networks for optical flow [project website] Requirements python 3.6 pytorch 1.1.0-1.3.0 pytorch correlation module (opt
Official Pytorch implementation of Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations
Scene Representation Networks This is the official implementation of the NeurIPS submission "Scene Representation Networks: Continuous 3D-Structure-Aw
3D HourGlass Networks for Human Pose Estimation Through Videos
3D-HourGlass-Network 3D CNN Based Hourglass Network for Human Pose Estimation (3D Human Pose) from videos. This was my summer'18 research project. Dis
Build Low Code Automated Tensorflow, What-IF explainable models in just 3 lines of code.
Build Low Code Automated Tensorflow explainable models in just 3 lines of code.
Implementation of Auto-Conditioned Recurrent Networks for Extended Complex Human Motion Synthesis
acLSTM_motion This folder contains an implementation of acRNN for the CMU motion database written in Pytorch. See the following links for more backgro
Something I built to test for Log4J vulnerabilities on customer networks.
Log4J-Scanner Something I built to test for Log4J vulnerabilities on customer networks. I'm not responsible if your computer blows up, catches fire or
HTTP graph database built in Python 3
KiwiDB HTTP graph database built in Python 3. Reference Format References are strings in the format: {refIDENTIFIER@GROUP} Authentication Currently, t
Almost State-of-the-art Text Generation library
Ps: we are adding transformer model soon Text Gen 🐐 Almost State-of-the-art Text Generation library Text gen is a python library that allow you build
Codes for building and training the neural network model described in Domain-informed neural networks for interaction localization within astroparticle experiments.
Domain-informed Neural Networks Codes for building and training the neural network model described in Domain-informed neural networks for interaction
Pytorch implementation of our paper under review -- 1xN Pattern for Pruning Convolutional Neural Networks
1xN Pattern for Pruning Convolutional Neural Networks (paper) . This is Pytorch re-implementation of "1xN Pattern for Pruning Convolutional Neural Net
[ICCV 2021] Target Adaptive Context Aggregation for Video Scene Graph Generation
Target Adaptive Context Aggregation for Video Scene Graph Generation This is a PyTorch implementation for Target Adaptive Context Aggregation for Vide
Code for the ICCV'21 paper "Context-aware Scene Graph Generation with Seq2Seq Transformers"
ICCV'21 Context-aware Scene Graph Generation with Seq2Seq Transformers Authors: Yichao Lu*, Himanshu Rai*, Cheng Chang*, Boris Knyazev†, Guangwei Yu,
Reference code for the paper "Cross-Camera Convolutional Color Constancy" (ICCV 2021)
Cross-Camera Convolutional Color Constancy, ICCV 2021 (Oral) Mahmoud Afifi1,2, Jonathan T. Barron2, Chloe LeGendre2, Yun-Ta Tsai2, and Francois Bleibe
Implementation of Nalbach et al. 2017 paper.
Deep Shading Convolutional Neural Networks for Screen-Space Shading Our project is based on Nalbach et al. 2017 paper. In this project, a set of buffe
Library extending Jupyter notebooks to integrate with Apache TinkerPop and RDF SPARQL.
Graph Notebook: easily query and visualize graphs The graph notebook provides an easy way to interact with graph databases using Jupyter notebooks. Us
A Persistent Embedded Graph Database for Python
Cog - Embedded Graph Database for Python cogdb.io New release: 2.0.5! Installing Cog pip install cogdb Cog is a persistent embedded graph database im
GANformer: Generative Adversarial Transformers
GANformer: Generative Adversarial Transformers Drew A. Hudson* & C. Lawrence Zitnick Update: We released the new GANformer2 paper! *I wish to thank Ch
Edge-Augmented Graph Transformer
Edge-augmented Graph Transformer Introduction This is the official implementation of the Edge-augmented Graph Transformer (EGT) as described in https:
This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels].
CGPN This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels]. Req
Efficient and Scalable Physics-Informed Deep Learning and Scientific Machine Learning on top of Tensorflow for multi-worker distributed computing
Notice: Support for Python 3.6 will be dropped in v.0.2.1, please plan accordingly! Efficient and Scalable Physics-Informed Deep Learning Collocation-
PyDEns is a framework for solving Ordinary and Partial Differential Equations (ODEs & PDEs) using neural networks
PyDEns PyDEns is a framework for solving Ordinary and Partial Differential Equations (ODEs & PDEs) using neural networks. With PyDEns one can solve PD
Physics-Informed Neural Networks (PINN) and Deep BSDE Solvers of Differential Equations for Scientific Machine Learning (SciML) accelerated simulation
NeuralPDE NeuralPDE.jl is a solver package which consists of neural network solvers for partial differential equations using scientific machine learni
Sparse Physics-based and Interpretable Neural Networks
Sparse Physics-based and Interpretable Neural Networks for PDEs This repository contains the code and manuscript for research done on Sparse Physics-b
Implementation of Research Paper "Learning to Enhance Low-Light Image via Zero-Reference Deep Curve Estimation"
Zero-DCE and Zero-DCE++(Lite architechture for Mobile and edge Devices) Papers Abstract The paper presents a novel method, Zero-Reference Deep Curve E
People Interaction Graph
Gihan Jayatilaka*, Jameel Hassan*, Suren Sritharan*, Janith Senananayaka, Harshana Weligampola, et. al., 2021. Holistic Interpretation of Public Scenes Using Computer Vision and Temporal Graphs to Identify Social Distancing Violations. arXiv preprint.
An implementation of quantum convolutional neural network with MindQuantum. Huawei, classifying MNIST dataset
关于实现的一点说明 山东大学 2020级 苏博南 www.subonan.com 文件说明 tools.py 这里面主要有两个函数: resize(a, lenb) 这其实是我找同学写的一个小算法hhh。给出一个$28\times 28$的方阵a,返回一个$lenb\times lenb$的方阵。因
Decentralised graph database management system
Decentralised graph database management system To get started clone the repo, and run the command below. python3 database.py Now, create a new termina
Quickly visualize docker networks with graphviz.
Docker Network Graph Visualize the relationship between Docker networks and containers as a neat graphviz graph. Example Usage usage: docker-net-graph
This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm.
This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm. It contains the code to reproduce the results presented in the original paper: https://arxiv.org/abs/2112.03670
Hierarchical Clustering: O(1)-Approximation for Well-Clustered Graphs
Hierarchical Clustering: O(1)-Approximation for Well-Clustered Graphs This repository contains code to accompany the paper "Hierarchical Clustering: O
An official source code for paper Deep Graph Clustering via Dual Correlation Reduction, accepted by AAAI 2022
Dual Correlation Reduction Network An official source code for paper Deep Graph Clustering via Dual Correlation Reduction, accepted by AAAI 2022. Any
Hunt down social media accounts by username across social networks
Hunt down social media accounts by username across social networks Installation | Usage | Docker Notes | Contributing Installation # clone the repo $
Recursive Bayesian Networks
Recursive Bayesian Networks This repository contains the code to reproduce the results from the NeurIPS 2021 paper Lieck R, Rohrmeier M (2021) Recursi
[AAAI 2022] Sparse Structure Learning via Graph Neural Networks for Inductive Document Classification
Sparse Structure Learning via Graph Neural Networks for inductive document classification Make graph dataset create co-occurrence graph for datasets.
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer
CGTransformer Code for our AAAI 2022 paper "Contrastive-Geometry Transformer network for Generalized 3D Pose Transfer" Contrastive-Geometry Transforme