274 Repositories
Python linear-regression Libraries
Ml based project which uses regression technique to predict the price.
Price-Predictor Ml based project which uses regression technique to predict the price. I have used various regression models and finds the model with
a wrapper around pytest for executing tests to look for test flakiness and runtime regression
bubblewrap a wrapper around pytest for assessing flakiness and runtime regressions a cs implementations practice project How to Run: First, install de
DANet for Tabular data classification/ regression.
Deep Abstract Networks A PyTorch code implemented for the submission DANets: Deep Abstract Networks for Tabular Data Classification and Regression. Do
The best solution of the Weather Prediction track in the Yandex Shifts challenge
yandex-shifts-weather The repository contains information about my solution for the Weather Prediction track in the Yandex Shifts challenge https://re
Linear encryption software programmed with python
Echoder linear encryption software programmed with python How does it work? The text in the text section runs a function with two keys entered keys mu
Air Pollution Prediction System using Linear Regression and ANN
AirPollution Pollution Weather Prediction System: Smart Outdoor Pollution Monitoring and Prediction for Healthy Breathing and Living Publication Link:
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation
Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici
ROMP: Monocular, One-stage, Regression of Multiple 3D People, ICCV21
Monocular, One-stage, Regression of Multiple 3D People ROMP, accepted by ICCV 2021, is a concise one-stage network for multi-person 3D mesh recovery f
Simple API for UCI Machine Learning Dataset Repository (search, download, analyze)
A simple API for working with University of California, Irvine (UCI) Machine Learning (ML) repository Table of Contents Introduction About Page of the
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation
Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici
A selection of a few algorithms used to sort or search an array
Sort and search algorithms This repository has some common search / sort algorithms written in python, I also included the pseudocode of each algorith
Linear programming solver for paper-reviewer matching and mind-matching
Paper-Reviewer Matcher A python package for paper-reviewer matching algorithm based on topic modeling and linear programming. The algorithm is impleme
Codes of the paper Deformable Butterfly: A Highly Structured and Sparse Linear Transform.
Deformable Butterfly: A Highly Structured and Sparse Linear Transform DeBut Advantages DeBut generalizes the square power of two butterfly factor matr
Implementation of Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement Learning
advantage-weighted-regression Implementation of Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement Learning, by Peng et al. (
Predicting diabetes over a five year period using logistic regression and the Pima First-Nation dataset
Diabetes This script uses the Pima First Nations dataset to create a model to predict whether or not an individual will develop Diabetes Mellitus Type
A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks
A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks without the use of any outside machine learning libraries - all from scratch.
A logistic regression model for health insurance purchasing prediction
Logistic_Regression_Model A logistic regression model for health insurance purchasing prediction This code is using these packages, so please make sur
BanditPAM: Almost Linear-Time k-Medoids Clustering
BanditPAM: Almost Linear-Time k-Medoids Clustering This repo contains a high-performance implementation of BanditPAM from BanditPAM: Almost Linear-Tim
A linear regression model for house price prediction
Linear_Regression_Model A linear regression model for house price prediction. This code is using these packages, so please make sure your have install
CyLP is a Python interface to COIN-OR’s Linear and mixed-integer program solvers (CLP, CBC, and CGL)
CyLP CyLP is a Python interface to COIN-OR’s Linear and mixed-integer program solvers (CLP, CBC, and CGL). CyLP’s unique feature is that you can use i
This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression problems
Doctoral dissertation of Zheng Zhao This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression pro
Portfolio Optimization and Quantitative Strategic Asset Allocation in Python
Riskfolio-Lib Quantitative Strategic Asset Allocation, Easy for Everyone. Description Riskfolio-Lib is a library for making quantitative strategic ass
Deep Reinforced Attention Regression for Partial Sketch Based Image Retrieval.
DARP-SBIR Intro This repository contains the source code implementation for ICDM submission paper Deep Reinforced Attention Regression for Partial Ske
Auto-Encoding Score Distribution Regression for Action Quality Assessment
DAE-AQA It is an open source program reference to paper Auto-Encoding Score Distribution Regression for Action Quality Assessment. 1.Introduction DAE
PyCaret is an open-source, low-code machine learning library in Python that automates machine learning workflows.
An open-source, low-code machine learning library in Python 🚀 Version 2.3.5 out now! Check out the release notes here. Official • Docs • Install • Tu
Bayesian Additive Regression Trees For Python
BartPy Introduction BartPy is a pure python implementation of the Bayesian additive regressions trees model of Chipman et al [1]. Reasons to use BART
Python beta calculator that retrieves stock and market data and provides linear regressions.
Stock and Index Beta Calculator Python script that calculates the beta (β) of a stock against the chosen index. The script retrieves the data and resa
This repository contains the code used for the implementation of the paper "Probabilistic Regression with HuberDistributions"
Public_prob_regression_with_huber_distributions This repository contains the code used for the implementation of the paper "Probabilistic Regression w
A pairs trade is a market neutral trading strategy enabling traders to profit from virtually any market conditions.
A pairs trade is a market neutral trading strategy enabling traders to profit from virtually any market conditions. This strategy is categorized as a statistical arbitrage and convergence trading strategy.
Python module for performing linear regression for data with measurement errors and intrinsic scatter
Linear regression for data with measurement errors and intrinsic scatter (BCES) Python module for performing robust linear regression on (X,Y) data po
A machine learning project that predicts the price of used cars in the UK
Car Price Prediction Image Credit: AA Cars Project Overview Scraped 3000 used cars data from AA Cars website using Python and BeautifulSoup. Cleaned t
Introducing neural networks to predict stock prices
IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o
This project uses unsupervised machine learning to identify correlations between daily inoculation rates in the USA and twitter sentiment in regards to COVID-19.
Twitter COVID-19 Sentiment Analysis Members: Christopher Bach | Khalid Hamid Fallous | Jay Hirpara | Jing Tang | Graham Thomas | David Wetherhold Pro
Official Matlab Implementation for "Tiny Obstacle Discovery by Occlusion-aware Multilayer Regression", TIP 2020
Tiny Obstacle Discovery by Occlusion-aware Multilayer Regression Official Matlab Implementation for "Tiny Obstacle Discovery by Occlusion-aware Multil
Code and experiments for "Deep Neural Networks for Rank Consistent Ordinal Regression based on Conditional Probabilities"
corn-ordinal-neuralnet This repository contains the orginal model code and experiment logs for the paper "Deep Neural Networks for Rank Consistent Ord
You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling
You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling Transformer-based models are widely used in natural language processi
Age Progression/Regression by Conditional Adversarial Autoencoder
Age Progression/Regression by Conditional Adversarial Autoencoder (CAAE) TensorFlow implementation of the algorithm in the paper Age Progression/Regre
Sentiment Analysis Project using Count Vectorizer and TF-IDF Vectorizer
Sentiment Analysis Project This project contains two sentiment analysis programs for Hotel Reviews using a Hotel Reviews dataset from Datafiniti. The
A Python implementation of Jerome Friedman's Multivariate Adaptive Regression Splines
py-earth A Python implementation of Jerome Friedman's Multivariate Adaptive Regression Splines algorithm, in the style of scikit-learn. The py-earth p
A scikit-learn-compatible module for estimating prediction intervals.
MAPIE - Model Agnostic Prediction Interval Estimator MAPIE allows you to easily estimate prediction intervals (or prediction sets) using your favourit
Using graph_nets for pion classification and energy regression. Contributions from LLNL and LBNL
nbdev template Use this template to more easily create your nbdev project. If you are using an older version of this template, and want to upgrade to
Scrutinizing XAI with linear ground-truth data
This repository contains all the experiments presented in the corresponding paper: "Scrutinizing XAI using linear ground-truth data with suppressor va
HMLET (Hybrid-Method-of-Linear-and-non-linEar-collaborative-filTering-method)
Methods HMLET (Hybrid-Method-of-Linear-and-non-linEar-collaborative-filTering-method) Dynamically selecting the best propagation method for each node
Implementation of the paper Scalable Intervention Target Estimation in Linear Models (NeurIPS 2021), and the code to generate simulation results.
Scalable Intervention Target Estimation in Linear Models Implementation of the paper Scalable Intervention Target Estimation in Linear Models (NeurIPS
Point detection through multi-instance deep heatmap regression for sutures in endoscopy
Suture detection PyTorch This repo contains the reference implementation of suture detection model in PyTorch for the paper Point detection through mu
sktime companion package for deep learning based on TensorFlow
NOTE: sktime-dl is currently being updated to work correctly with sktime 0.6, and wwill be fully relaunched over the summer. The plan is Refactor and
Deep Survival Machines - Fully Parametric Survival Regression
Package: dsm Python package dsm provides an API to train the Deep Survival Machines and associated models for problems in survival analysis. The under
onelearn: Online learning in Python
onelearn: Online learning in Python Documentation | Reproduce experiments | onelearn stands for ONE-shot LEARNning. It is a small python package for o
Python based framework for Automatic AI for Regression and Classification over numerical data.
Python based framework for Automatic AI for Regression and Classification over numerical data. Performs model search, hyper-parameter tuning, and high-quality Jupyter Notebook code generation.
This repository contains the code to predict house price using Linear Regression Method
House-Price-Prediction-Using-Linear-Regression The dataset I used for this personal project is from Kaggle uploaded by aariyan panchal. Link of Datase
Python module providing a framework to trace individual edges in an image using Gaussian process regression.
Edge Tracing using Gaussian Process Regression Repository storing python module which implements a framework to trace individual edges in an image usi
Voip Open Linear Testing Suite
VOLTS Voip Open Linear Tester Suite Functional tests for VoIP systems based on voip_patrol and docker 10'000 ft. view System is designed to run simple
A non-linear, non-parametric Machine Learning method capable of modeling complex datasets
Fast Symbolic Regression Symbolic Regression is a non-linear, non-parametric Machine Learning method capable of modeling complex data sets. fastsr aim
Source code of generalized shuffled linear regression
Generalized-Shuffled-Linear-Regression Code for the ICCV 2021 paper: Generalized Shuffled Linear Regression. Authors: Feiran Li, Kent Fujiwara, Fumio
Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python
Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python THIS PROJECT IS CURRENTLY A WORK IN PROGRESS AND THUS THIS REPOSITORY I
Benchmark library for high-dimensional HPO of black-box models based on Weighted Lasso regression
LassoBench LassoBench is a library for high-dimensional hyperparameter optimization benchmarks based on Weighted Lasso regression. Note: LassoBench is
Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification
Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification This repository is the official implementation of [Dealing With Misspeci
Reverse engineering recurrent neural networks with Jacobian switching linear dynamical systems
Reverse engineering recurrent neural networks with Jacobian switching linear dynamical systems This repository is the official implementation of Rever
Faster Convex Lipschitz Regression
Faster Convex Lipschitz Regression This reepository provides a python implementation of our Faster Convex Lipschitz Regression algorithm with GPU and
This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroimaging" that has been accepted to NeurIPS 2021.
Dugh-NeurIPS-2021 This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroi
Regression Metrics Calculation Made easy for tensorflow2 and scikit-learn
Regression Metrics Installation To install the package from the PyPi repository you can execute the following command: pip install regressionmetrics I
Regression Metrics Calculation Made easy
Regression Metrics Mean Absolute Error Mean Square Error Root Mean Square Error Root Mean Square Logarithmic Error Root Mean Square Logarithmic Error
Iterative stochastic gradient descent (SGD) linear regressor with regularization
SGD-Linear-Regressor Iterative stochastic gradient descent (SGD) linear regressor with regularization Dataset: Kaggle “Graduate Admission 2” https://w
With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function
With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function. At the moment, only TensorFlow sequential models are supported. Interfaces to either the Pyomo or Gurobi modeling environments are offered.
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression YOLOv5 with alpha-IoU losses implemented in PyTorch. Example r
Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression
Quantile Regression DQN Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression (https://arx
ConformalLayers: A non-linear sequential neural network with associative layers
ConformalLayers: A non-linear sequential neural network with associative layers ConformalLayers is a conformal embedding of sequential layers of Convo
Code for the Weighted, Accelerated and Restarted Primal-dual algorithm. This algorithm achieves stable linear convergence for reconstruction from undersampled noisy measurements under an approximate sharpness condition. See the paper for details.
WARPd Code for the Weighted, Accelerated and Restarted Primal-dual algorithm. This algorithm achieves stable linear convergence for reconstruction fro
Rotazioni: a linear programming workout split optimizer
Rotazioni: a linear programming workout split optimizer Dependencies Dependencies for the frontend and backend are respectively listed in client/packa
Official implementation of "Learning Proposals for Practical Energy-Based Regression", 2021.
ebms_proposals Official implementation (PyTorch) of the paper: Learning Proposals for Practical Energy-Based Regression, 2021 [arXiv] [project]. Fredr
SOFT: Softmax-free Transformer with Linear Complexity, NeurIPS 2021 Spotlight
SOFT: Softmax-free Transformer with Linear Complexity SOFT: Softmax-free Transformer with Linear Complexity, Jiachen Lu, Jinghan Yao, Junge Zhang, Xia
Stochastic Gradient Trees implementation in Python
Stochastic Gradient Trees - Python Stochastic Gradient Trees1 by Henry Gouk, Bernhard Pfahringer, and Eibe Frank implementation in Python. Based on th
Differentiable scientific computing library
xitorch: differentiable scientific computing library xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely
ML From Scratch
ML from Scratch MACHINE LEARNING TOPICS COVERED - FROM SCRATCH Linear Regression Logistic Regression K Means Clustering K Nearest Neighbours Decision
Code image classification of MNIST dataset using different architectures: simple linear NN, autoencoder, and highway network
Deep Learning for image classification pip install -r http://webia.lip6.fr/~baskiotisn/requirements-amal.txt Train an autoencoder python3 train_auto
Random Forests for Regression with Missing Entries
Random Forests for Regression with Missing Entries These are specific codes used in the article: On the Consistency of a Random Forest Algorithm in th
The Body Part Regression (BPR) model translates the anatomy in a radiologic volume into a machine-interpretable form.
Copyright © German Cancer Research Center (DKFZ), Division of Medical Image Computing (MIC). Please make sure that your usage of this code is in compl
MIT-Machine Learning with Python–From Linear Models to Deep Learning
MIT-Machine Learning with Python–From Linear Models to Deep Learning | One of the 5 courses in MIT MicroMasters in Statistics & Data Science Welcome t
Diabetes Prediction with Logistic Regression
Diabetes Prediction with Logistic Regression Exploratory Data Analysis Data Preprocessing Model & Prediction Model Evaluation Model Validation: Holdou
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression YOLOv5 with alpha-IoU losses implemented in PyTorch. Example r
CONditionals for Ordinal Regression and classification in tensorflow
Condor Ordinal regression in Tensorflow Keras Tensorflow Keras implementation of CONDOR Ordinal Regression (aka ordinal classification) by Garrett Jen
PIXIE: Collaborative Regression of Expressive Bodies
PIXIE: Collaborative Regression of Expressive Bodies [Project Page] This is the official Pytorch implementation of PIXIE. PIXIE reconstructs an expres
tetrados is a tool to generate a density of states using the linear tetrahedron method from a band structure.
tetrados tetrados is a tool to generate a density of states using the linear tetrahedron method from a band structure. Currently, only VASP calculatio
CONditionals for Ordinal Regression and classification in PyTorch
CONDOR pytorch implementation for ordinal regression with deep neural networks. Documentation: https://GarrettJenkinson.github.io/condor_pytorch About
Code for generating the figures in the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views?"
Code for running simulations for the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Lin
Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees"
Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees" Installa
An end-to-end regression problem of predicting the price of properties in Bangalore.
Bangalore-House-Price-Prediction An end-to-end regression problem of predicting the price of properties in Bangalore. Deployed in Heroku using Flask.
Perform Linear Classification with Multi-way Data
MultiwayClassification This is an R package to perform linear classification for data with multi-way structure. The distance-weighted discrimination (
Tribuo - A Java machine learning library
Tribuo - A Java prediction library (v4.1) Tribuo is a machine learning library in Java that provides multi-class classification, regression, clusterin
Implementations of Machine Learning models, Regularizers, Optimizers and different Cost functions.
Linear Models Implementations of LinearRegression, LassoRegression and RidgeRegression with appropriate Regularizers and Optimizers. Linear Regression
PyTorch implementation of the WarpedGANSpace: Finding non-linear RBF paths in GAN latent space (ICCV 2021)
Authors official PyTorch implementation of the "WarpedGANSpace: Finding non-linear RBF paths in GAN latent space" [ICCV 2021].
[NeurIPS 2021] Galerkin Transformer: a linear attention without softmax
[NeurIPS 2021] Galerkin Transformer: linear attention without softmax Summary A non-numerical analyst oriented explanation on Toward Data Science abou
Graphic notes on Gilbert Strang's "Linear Algebra for Everyone"
Graphic notes on Gilbert Strang's "Linear Algebra for Everyone"
Implementation of linear CorEx and temporal CorEx.
Correlation Explanation Methods Official implementation of linear correlation explanation (linear CorEx) and temporal correlation explanation (T-CorEx
PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper.
deep-linear-shapes PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper. If you find this code useful i
Simple linear model implementations from scratch.
Hand Crafted Models Simple linear model implementations from scratch. Table of contents Overview Project Structure Getting started Citing this project
Code in PyTorch for the convex combination linear IAF and the Householder Flow, J.M. Tomczak & M. Welling
VAE with Volume-Preserving Flows This is a PyTorch implementation of two volume-preserving flows as described in the following papers: Tomczak, J. M.,
Pipeline for fast building text classification TF-IDF + LogReg baselines.
Text Classification Baseline Pipeline for fast building text classification TF-IDF + LogReg baselines. Usage Instead of writing custom code for specif
[TIP 2021] SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction
SADRNet Paper link: SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction Requirements python
[ICCV 2021] Group-aware Contrastive Regression for Action Quality Assessment
CoRe Created by Xumin Yu*, Yongming Rao*, Wenliang Zhao, Jiwen Lu, Jie Zhou This is the PyTorch implementation for ICCV paper Group-aware Contrastive