2158 Repositories
Python masked-language-models Libraries
Reimplementation of the paper `Human Attention Maps for Text Classification: Do Humans and Neural Networks Focus on the Same Words? (ACL2020)`
Human Attention for Text Classification Re-implementation of the paper Human Attention Maps for Text Classification: Do Humans and Neural Networks Foc
This repo contains the official code of our work SAM-SLR which won the CVPR 2021 Challenge on Large Scale Signer Independent Isolated Sign Language Recognition.
Skeleton Aware Multi-modal Sign Language Recognition By Songyao Jiang, Bin Sun, Lichen Wang, Yue Bai, Kunpeng Li and Yun Fu. Smile Lab @ Northeastern
Code for "Learning the Best Pooling Strategy for Visual Semantic Embedding", CVPR 2021
Learning the Best Pooling Strategy for Visual Semantic Embedding Official PyTorch implementation of the paper Learning the Best Pooling Strategy for V
Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet
Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet, CVPR2021 安全AI挑战者计划第六期:ImageNet无限制对抗攻击 决赛第四名(team name: Advers)
OCTIS: Comparing Topic Models is Simple! A python package to optimize and evaluate topic models (accepted at EACL2021 demo track)
OCTIS : Optimizing and Comparing Topic Models is Simple! OCTIS (Optimizing and Comparing Topic models Is Simple) aims at training, analyzing and compa
A simple way to train and use PyTorch models with multi-GPU, TPU, mixed-precision
🤗 Accelerate was created for PyTorch users who like to write the training loop of PyTorch models but are reluctant to write and maintain the boilerplate code needed to use multi-GPUs/TPU/fp16.
Pytorch implementation of our paper under review — Lottery Jackpots Exist in Pre-trained Models
Lottery Jackpots Exist in Pre-trained Models (Paper Link) Requirements Python = 3.7.4 Pytorch = 1.6.1 Torchvision = 0.4.1 Reproduce the Experiment
skweak: A software toolkit for weak supervision applied to NLP tasks
Labelled data remains a scarce resource in many practical NLP scenarios. This is especially the case when working with resource-poor languages (or text domains), or when using task-specific labels without pre-existing datasets. The only available option is often to collect and annotate texts by hand, which is expensive and time-consuming.
This repository contains the code for "Generating Datasets with Pretrained Language Models".
Datasets from Instructions (DINO 🦕 ) This repository contains the code for Generating Datasets with Pretrained Language Models. The paper introduces
Source code for AAAI20 "Generating Persona Consistent Dialogues by Exploiting Natural Language Inference".
Generating Persona Consistent Dialogues by Exploiting Natural Language Inference Source code for RCDG model in AAAI20 Generating Persona Consistent Di
Sequence-to-sequence framework with a focus on Neural Machine Translation based on Apache MXNet
Sequence-to-sequence framework with a focus on Neural Machine Translation based on Apache MXNet
Bayesian Image Reconstruction using Deep Generative Models
Bayesian Image Reconstruction using Deep Generative Models R. Marinescu, D. Moyer, P. Golland For technical inquiries, please create a Github issue. F
FedNLP: A Benchmarking Framework for Federated Learning in Natural Language Processing
FedNLP is a research-oriented benchmarking framework for advancing federated learning (FL) in natural language processing (NLP). It uses FedML repository as the git submodule. In other words, FedNLP only focuses on adavanced models and dataset, while FedML supports various federated optimizers (e.g., FedAvg) and platforms (Distributed Computing, IoT/Mobile, Standalone).
GrammarTagger — A Neural Multilingual Grammar Profiler for Language Learning
GrammarTagger — A Neural Multilingual Grammar Profiler for Language Learning GrammarTagger is an open-source toolkit for grammatical profiling for lan
GLM (General Language Model)
GLM GLM is a General Language Model pretrained with an autoregressive blank-filling objective and can be finetuned on various natural language underst
Pretrained Pytorch face detection (MTCNN) and recognition (InceptionResnet) models
Face Recognition Using Pytorch Python 3.7 3.6 3.5 Status This is a repository for Inception Resnet (V1) models in pytorch, pretrained on VGGFace2 and
Sandbox for training deep learning networks
Deep learning networks This repo is used to research convolutional networks primarily for computer vision tasks. For this purpose, the repo contains (
Fine-tune pretrained Convolutional Neural Networks with PyTorch
Fine-tune pretrained Convolutional Neural Networks with PyTorch. Features Gives access to the most popular CNN architectures pretrained on ImageNet. A
Quickly comparing your image classification models with the state-of-the-art models (such as DenseNet, ResNet, ...)
Image Classification Project Killer in PyTorch This repo is designed for those who want to start their experiments two days before the deadline and ki
Awesome-NLP-Research (ANLP)
Awesome-NLP-Research (ANLP)
A Pythonic introduction to methods for scaling your data science and machine learning work to larger datasets and larger models, using the tools and APIs you know and love from the PyData stack (such as numpy, pandas, and scikit-learn).
This tutorial's purpose is to introduce Pythonistas to methods for scaling their data science and machine learning work to larger datasets and larger models, using the tools and APIs they know and love from the PyData stack (such as numpy, pandas, and scikit-learn).
Python library containing BART query generation and BERT-based Siamese models for neural retrieval.
Neural Retrieval Embedding-based Zero-shot Retrieval through Query Generation leverages query synthesis over large corpuses of unlabeled text (such as
Changing the Mind of Transformers for Topically-Controllable Language Generation
We will first introduce the how to run the IPython notebook demo by downloading our pretrained models. Then, we will introduce how to run our training and evaluation code.
QA-GNN: Question Answering using Language Models and Knowledge Graphs
QA-GNN: Question Answering using Language Models and Knowledge Graphs This repo provides the source code & data of our paper: QA-GNN: Reasoning with L
Try out deep learning models online on Google Colab
Try out deep learning models online on Google Colab
Mind the Trade-off: Debiasing NLU Models without Degrading the In-distribution Performance
Models for natural language understanding (NLU) tasks often rely on the idiosyncratic biases of the dataset, which make them brittle against test cases outside the training distribution.
I-BERT: Integer-only BERT Quantization
I-BERT: Integer-only BERT Quantization HuggingFace Implementation I-BERT is also available in the master branch of HuggingFace! Visit the following li
PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning
PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning Warning: This is a rapidly evolving research prototype.
A fast and easy implementation of Transformer with PyTorch.
FasySeq FasySeq is a shorthand as a Fast and easy sequential modeling toolkit. It aims to provide a seq2seq model to researchers and developers, which
Newt - a Gaussian process library in JAX.
Newt __ \/_ (' \`\ _\, \ \\/ /`\/\ \\ \ \\
Russian GPT3 models.
Russian GPT-3 models (ruGPT3XL, ruGPT3Large, ruGPT3Medium, ruGPT3Small) trained with 2048 sequence length with sparse and dense attention blocks. We also provide Russian GPT-2 large model (ruGPT2Large) trained with 1024 sequence length.
Introducing neural networks to predict stock prices
IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o
Platform for building statistical models of cities and regions
UrbanSim UrbanSim is a platform for building statistical models of cities and regions. These models help forecast long-range patterns in real estate d
PyTorch implementation of Algorithm 1 of "On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models"
Code for On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models This repository will reproduce the main results from our pape
Tool for visualizing attention in the Transformer model (BERT, GPT-2, Albert, XLNet, RoBERTa, CTRL, etc.)
Tool for visualizing attention in the Transformer model (BERT, GPT-2, Albert, XLNet, RoBERTa, CTRL, etc.)
CLASP - Contrastive Language-Aminoacid Sequence Pretraining
CLASP - Contrastive Language-Aminoacid Sequence Pretraining Repository for creating models pretrained on language and aminoacid sequences similar to C
《K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters》(2020)
K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters This repository is the implementation of the paper "K-Adapter: Infusing Knowledge
Learning recognition/segmentation models without end-to-end training. 40%-60% less GPU memory footprint. Same training time. Better performance.
InfoPro-Pytorch The Information Propagation algorithm for training deep networks with local supervision. (ICLR 2021) Revisiting Locally Supervised Lea
Set of models for classifcation of 3D volumes
Classification models 3D Zoo - Keras and TF.Keras This repository contains 3D variants of popular CNN models for classification like ResNets, DenseNet
Code for pre-training CharacterBERT models (as well as BERT models).
Pre-training CharacterBERT (and BERT) This is a repository for pre-training BERT and CharacterBERT. DISCLAIMER: The code was largely adapted from an o
Official PyTorch implementation of MX-Font (Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Experts)
Introduction Pytorch implementation of Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Expert. | paper Song Park1
A collection of scripts to preprocess ASR datasets and finetune language-specific Wav2Vec2 XLSR models
wav2vec-toolkit A collection of scripts to preprocess ASR datasets and finetune language-specific Wav2Vec2 XLSR models This repository accompanies the
⚡ Automatically decrypt encryptions without knowing the key or cipher, decode encodings, and crack hashes ⚡
⚡ Automatically decrypt encryptions without knowing the key or cipher, decode encodings, and crack hashes ⚡
The source code for the Cutoff data augmentation approach proposed in this paper: "A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language Understanding and Generation".
Cutoff: A Simple Data Augmentation Approach for Natural Language This repository contains source code necessary to reproduce the results presented in
Source code for the GPT-2 story generation models in the EMNLP 2020 paper "STORIUM: A Dataset and Evaluation Platform for Human-in-the-Loop Story Generation"
Storium GPT-2 Models This is the official repository for the GPT-2 models described in the EMNLP 2020 paper [STORIUM: A Dataset and Evaluation Platfor
Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT
CheXbert: Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT CheXbert is an accurate, automated dee
Code, Data and Demo for Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting
InversePrompting Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting Code: The code is provided in the "chinese_ip"
UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language
UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language This repository contains UA-GEC data and an accompanying Python lib
Official code for the CVPR 2021 paper "How Well Do Self-Supervised Models Transfer?"
How Well Do Self-Supervised Models Transfer? This repository hosts the code for the experiments in the CVPR 2021 paper How Well Do Self-Supervised Mod
TextFlint is a multilingual robustness evaluation platform for natural language processing tasks,
TextFlint is a multilingual robustness evaluation platform for natural language processing tasks, which unifies general text transformation, task-specific transformation, adversarial attack, sub-population, and their combinations to provide a comprehensive robustness analysis.
(ImageNet pretrained models) The official pytorch implemention of the TPAMI paper "Res2Net: A New Multi-scale Backbone Architecture"
Res2Net The official pytorch implemention of the paper "Res2Net: A New Multi-scale Backbone Architecture" Our paper is accepted by IEEE Transactions o
Top2Vec is an algorithm for topic modeling and semantic search.
Top2Vec is an algorithm for topic modeling and semantic search. It automatically detects topics present in text and generates jointly embedded topic, document and word vectors.
Neural models of common sense. 🤖
Unicorn on Rainbow Neural models of common sense. This repository is for the paper: Unicorn on Rainbow: A Universal Commonsense Reasoning Model on a N
This project is part of Eleuther AI's quest to create a massive repository of high quality text data for training language models.
This project is part of Eleuther AI's quest to create a massive repository of high quality text data for training language models.
A novel method to tune language models. Codes and datasets for paper ``GPT understands, too''.
P-tuning A novel method to tune language models. Codes and datasets for paper ``GPT understands, too''. How to use our code We have released the code
source code and pre-trained/fine-tuned checkpoint for NAACL 2021 paper LightningDOT
LightningDOT: Pre-training Visual-Semantic Embeddings for Real-Time Image-Text Retrieval This repository contains source code and pre-trained/fine-tun
Implementation of the paper "Language-agnostic representation learning of source code from structure and context".
Code Transformer This is an official PyTorch implementation of the CodeTransformer model proposed in: D. Zügner, T. Kirschstein, M. Catasta, J. Leskov
The guide to tackle with the Text Summarization
The guide to tackle with the Text Summarization
JMESPath is a query language for JSON.
JMESPath JMESPath (pronounced "james path") allows you to declaratively specify how to extract elements from a JSON document. For example, given this
Viewflow is an Airflow-based framework that allows data scientists to create data models without writing Airflow code.
Viewflow Viewflow is a framework built on the top of Airflow that enables data scientists to create materialized views. It allows data scientists to f
Automated Machine Learning Pipeline with Feature Engineering and Hyper-Parameters Tuning
The mljar-supervised is an Automated Machine Learning Python package that works with tabular data. I
Tracking Progress in Natural Language Processing
Repository to track the progress in Natural Language Processing (NLP), including the datasets and the current state-of-the-art for the most common NLP tasks.
A probabilistic programming library for Bayesian deep learning, generative models, based on Tensorflow
ZhuSuan is a Python probabilistic programming library for Bayesian deep learning, which conjoins the complimentary advantages of Bayesian methods and
A probabilistic programming language in TensorFlow. Deep generative models, variational inference.
Edward is a Python library for probabilistic modeling, inference, and criticism. It is a testbed for fast experimentation and research with probabilis
Describing statistical models in Python using symbolic formulas
Patsy is a Python library for describing statistical models (especially linear models, or models that have a linear component) and building design mat
A Python package for Bayesian forecasting with object-oriented design and probabilistic models under the hood.
Disclaimer This project is stable and being incubated for long-term support. It may contain new experimental code, for which APIs are subject to chang
Python Library for learning (Structure and Parameter) and inference (Statistical and Causal) in Bayesian Networks.
pgmpy pgmpy is a python library for working with Probabilistic Graphical Models. Documentation and list of algorithms supported is at our official sit
Fast, flexible and easy to use probabilistic modelling in Python.
Please consider citing the JMLR-MLOSS Manuscript if you've used pomegranate in your academic work! pomegranate is a package for building probabilistic
Hidden Markov Models in Python, with scikit-learn like API
hmmlearn hmmlearn is a set of algorithms for unsupervised learning and inference of Hidden Markov Models. For supervised learning learning of HMMs and
Scikit-learn compatible estimation of general graphical models
skggm : Gaussian graphical models using the scikit-learn API In the last decade, learning networks that encode conditional independence relationships
Differentiable SDE solvers with GPU support and efficient sensitivity analysis.
PyTorch Implementation of Differentiable SDE Solvers This library provides stochastic differential equation (SDE) solvers with GPU support and efficie
Pretrained EfficientNet, EfficientNet-Lite, MixNet, MobileNetV3 / V2, MNASNet A1 and B1, FBNet, Single-Path NAS
(Generic) EfficientNets for PyTorch A 'generic' implementation of EfficientNet, MixNet, MobileNetV3, etc. that covers most of the compute/parameter ef
Rembg Video Virtual Green Screen Edition
Rembg Virtual Greenscreen Edition is a tool to create a green screen matte for videos
Library for faster pinned CPU - GPU transfer in Pytorch
SpeedTorch Faster pinned CPU tensor - GPU Pytorch variabe transfer and GPU tensor - GPU Pytorch variable transfer, in certain cases. Update 9-29-1
Decentralized deep learning in PyTorch. Built to train models on thousands of volunteers across the world.
Hivemind: decentralized deep learning in PyTorch Hivemind is a PyTorch library to train large neural networks across the Internet. Its intended usage
Petastorm library enables single machine or distributed training and evaluation of deep learning models from datasets in Apache Parquet format. It supports ML frameworks such as Tensorflow, Pytorch, and PySpark and can be used from pure Python code.
Petastorm Contents Petastorm Installation Generating a dataset Plain Python API Tensorflow API Pytorch API Spark Dataset Converter API Analyzing petas
AtsPy: Automated Time Series Models in Python (by @firmai)
Automated Time Series Models in Python (AtsPy) SSRN Report Easily develop state of the art time series models to forecast univariate data series. Simp
Automatically build ARIMA, SARIMAX, VAR, FB Prophet and XGBoost Models on Time Series data sets with a Single Line of Code. Now updated with Dask to handle millions of rows.
Auto_TS: Auto_TimeSeries Automatically build multiple Time Series models using a Single Line of Code. Now updated with Dask. Auto_timeseries is a comp
A python library for easy manipulation and forecasting of time series.
Time Series Made Easy in Python darts is a python library for easy manipulation and forecasting of time series. It contains a variety of models, from
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.
pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se
ARCH models in Python
arch Autoregressive Conditional Heteroskedasticity (ARCH) and other tools for financial econometrics, written in Python (with Cython and/or Numba used
Qlib is an AI-oriented quantitative investment platform, which aims to realize the potential, empower the research, and create the value of AI technologies in quantitative investment. With Qlib, you can easily try your ideas to create better Quant investment strategies.
Qlib is an AI-oriented quantitative investment platform, which aims to realize the potential, empower the research, and create the value of AI technol
Release of SPLASH: Dataset for semantic parse correction with natural language feedback in the context of text-to-SQL parsing
SPLASH: Semantic Parsing with Language Assistance from Humans SPLASH is dataset for the task of semantic parse correction with natural language feedba
NaturalProofs: Mathematical Theorem Proving in Natural Language
NaturalProofs: Mathematical Theorem Proving in Natural Language NaturalProofs: Mathematical Theorem Proving in Natural Language Sean Welleck, Jiacheng
Source code, datasets and trained models for the paper Learning Advanced Mathematical Computations from Examples (ICLR 2021), by François Charton, Amaury Hayat (ENPC-Rutgers) and Guillaume Lample
Maths from examples - Learning advanced mathematical computations from examples This is the source code and data sets relevant to the paper Learning a
Diverse Image Captioning with Context-Object Split Latent Spaces (NeurIPS 2020)
Diverse Image Captioning with Context-Object Split Latent Spaces This repository is the PyTorch implementation of the paper: Diverse Image Captioning
CDIoU and CDIoU loss is like a convenient plug-in that can be used in multiple models. CDIoU and CDIoU loss have different excellent performances in several models such as Faster R-CNN, YOLOv4, RetinaNet and . There is a maximum AP improvement of 1.9% and an average AP of 0.8% improvement on MS COCO dataset, compared to traditional evaluation-feedback modules. Here we just use as an example to illustrate the code.
CDIoU-CDIoUloss CDIoU and CDIoU loss is like a convenient plug-in that can be used in multiple models. CDIoU and CDIoU loss have different excellent p
⚡ boost inference speed of T5 models by 5x & reduce the model size by 3x using fastT5.
Reduce T5 model size by 3X and increase the inference speed up to 5X. Install Usage Details Functionalities Benchmarks Onnx model Quantized onnx model
UNION: An Unreferenced Metric for Evaluating Open-ended Story Generation
UNION Automatic Evaluation Metric described in the paper UNION: An UNreferenced MetrIc for Evaluating Open-eNded Story Generation (EMNLP 2020). Please
Monocular Depth Estimation - Weighted-average prediction from multiple pre-trained depth estimation models
merged_depth runs (1) AdaBins, (2) DiverseDepth, (3) MiDaS, (4) SGDepth, and (5) Monodepth2, and calculates a weighted-average per-pixel absolute dept
Repository providing a wide range of self-supervised pretrained models for computer vision tasks.
Hierarchical Pretraining: Research Repository This is a research repository for reproducing the results from the project "Self-supervised pretraining
[CVPR 2021] Counterfactual VQA: A Cause-Effect Look at Language Bias
Counterfactual VQA (CF-VQA) This repository is the Pytorch implementation of our paper "Counterfactual VQA: A Cause-Effect Look at Language Bias" in C
OCR system for Arabic language that converts images of typed text to machine-encoded text.
Arabic OCR OCR system for Arabic language that converts images of typed text to machine-encoded text. The system currently supports only letters (29 l
Natural language detection
Detect the language of text. What’s so cool about franc? franc can support more languages(†) than any other library franc is packaged with support for
Text language identification using Wikipedia data
Text language identification using Wikipedia data The aim of this project is to provide high-quality language detection over all the web's languages.
Lightning Fast Language Prediction 🚀
whatthelang Lightning Fast Language Prediction 🚀 Dependencies The dependencies can be installed using the requirements.txt file: $ pip install -r req
👄 The most accurate natural language detection library for Java and the JVM, suitable for long and short text alike
Quick Info this library tries to solve language detection of very short words and phrases, even shorter than tweets makes use of both statistical and
This repository lets you train neural networks models for performing end-to-end full-page handwriting recognition using the Apache MXNet deep learning frameworks on the IAM Dataset.
Handwritten Text Recognition (OCR) with MXNet Gluon These notebooks have been created by Jonathan Chung, as part of his internship as Applied Scientis
TensorFlow code for the neural network presented in the paper: "Structural Language Models of Code" (ICML'2020)
SLM: Structural Language Models of Code This is an official implementation of the model described in: "Structural Language Models of Code" [PDF] To ap