798 Repositories
Python memory-training Libraries
Focus on Algorithm Design, Not on Data Wrangling
The dataTap Python library is the primary interface for using dataTap's rich data management tools. Create datasets, stream annotations, and analyze model performance all with one library.
skweak: A software toolkit for weak supervision applied to NLP tasks
Labelled data remains a scarce resource in many practical NLP scenarios. This is especially the case when working with resource-poor languages (or text domains), or when using task-specific labels without pre-existing datasets. The only available option is often to collect and annotate texts by hand, which is expensive and time-consuming.
Source code for AAAI20 "Generating Persona Consistent Dialogues by Exploiting Natural Language Inference".
Generating Persona Consistent Dialogues by Exploiting Natural Language Inference Source code for RCDG model in AAAI20 Generating Persona Consistent Di
[CVPRW 21] "BNN - BN = ? Training Binary Neural Networks without Batch Normalization", Tianlong Chen, Zhenyu Zhang, Xu Ouyang, Zechun Liu, Zhiqiang Shen, Zhangyang Wang
BNN - BN = ? Training Binary Neural Networks without Batch Normalization Codes for this paper BNN - BN = ? Training Binary Neural Networks without Bat
This repository allows you to anonymize sensitive information in images/videos. The solution is fully compatible with the DL-based training/inference solutions that we already published/will publish for Object Detection and Semantic Segmentation.
BMW-Anonymization-Api Data privacy and individuals’ anonymity are and always have been a major concern for data-driven companies. Therefore, we design
Diffgram - Supervised Learning Data Platform
Data Annotation, Data Labeling, Annotation Tooling, Training Data for Machine Learning
Official code of our work, Unified Pre-training for Program Understanding and Generation [NAACL 2021].
PLBART Code pre-release of our work, Unified Pre-training for Program Understanding and Generation accepted at NAACL 2021. Note. A detailed documentat
Visualization Toolbox for Long Short Term Memory networks (LSTMs)
Visualization Toolbox for Long Short Term Memory networks (LSTMs)
Sandbox for training deep learning networks
Deep learning networks This repo is used to research convolutional networks primarily for computer vision tasks. For this purpose, the repo contains (
Segcache: a memory-efficient and scalable in-memory key-value cache for small objects
Segcache: a memory-efficient and scalable in-memory key-value cache for small objects This repo contains the code of Segcache described in the followi
Provided is code that demonstrates the training and evaluation of the work presented in the paper: "On the Detection of Digital Face Manipulation" published in CVPR 2020.
FFD Source Code Provided is code that demonstrates the training and evaluation of the work presented in the paper: "On the Detection of Digital Face M
Based on the paper "Geometry-aware Instance-reweighted Adversarial Training" ICLR 2021 oral
Geometry-aware Instance-reweighted Adversarial Training This repository provides codes for Geometry-aware Instance-reweighted Adversarial Training (ht
Asynchronous Client for the worlds fastest in-memory geo-database Tile38
This is an asynchonous Python client for Tile38 that allows for fast and easy interaction with the worlds fastest in-memory geodatabase Tile38.
Trading environnement for RL agents, backtesting and training.
TradzQAI Trading environnement for RL agents, backtesting and training. Live session with coinbasepro-python is finaly arrived ! Available sessions: L
Trading and Backtesting environment for training reinforcement learning agent or simple rule base algo.
TradingGym TradingGym is a toolkit for training and backtesting the reinforcement learning algorithms. This was inspired by OpenAI Gym and imitated th
Learning recognition/segmentation models without end-to-end training. 40%-60% less GPU memory footprint. Same training time. Better performance.
InfoPro-Pytorch The Information Propagation algorithm for training deep networks with local supervision. (ICLR 2021) Revisiting Locally Supervised Lea
Code for pre-training CharacterBERT models (as well as BERT models).
Pre-training CharacterBERT (and BERT) This is a repository for pre-training BERT and CharacterBERT. DISCLAIMER: The code was largely adapted from an o
This project is part of Eleuther AI's quest to create a massive repository of high quality text data for training language models.
This project is part of Eleuther AI's quest to create a massive repository of high quality text data for training language models.
PINCE is a front-end/reverse engineering tool for the GNU Project Debugger (GDB), focused on games.
PINCE is a front-end/reverse engineering tool for the GNU Project Debugger (GDB), focused on games. However, it can be used for any reverse-engi
Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation
SimplePose Code and pre-trained models for our paper, “Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation”, a
Code for the paper: Adversarial Training Against Location-Optimized Adversarial Patches. ECCV-W 2020.
Adversarial Training Against Location-Optimized Adversarial Patches arXiv | Paper | Code | Video | Slides Code for the paper: Sukrut Rao, David Stutz,
[ICLR 2021] "CPT: Efficient Deep Neural Network Training via Cyclic Precision" by Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin
CPT: Efficient Deep Neural Network Training via Cyclic Precision Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin Accep
Guide: Finetune GPT2-XL (1.5 Billion Parameters) and GPT-NEO (2.7 B) on a single 16 GB VRAM V100 Google Cloud instance with Huggingface Transformers using DeepSpeed
Guide: Finetune GPT2-XL (1.5 Billion Parameters) and GPT-NEO (2.7 Billion Parameters) on a single 16 GB VRAM V100 Google Cloud instance with Huggingfa
High-level batteries-included neural network training library for Pytorch
Pywick High-Level Training framework for Pytorch Pywick is a high-level Pytorch training framework that aims to get you up and running quickly with st
higher is a pytorch library allowing users to obtain higher order gradients over losses spanning training loops rather than individual training steps.
higher is a library providing support for higher-order optimization, e.g. through unrolled first-order optimization loops, of "meta" aspects of these
Training RNNs as Fast as CNNs (https://arxiv.org/abs/1709.02755)
News SRU++, a new SRU variant, is released. [tech report] [blog] The experimental code and SRU++ implementation are available on the dev branch which
Differentiable ODE solvers with full GPU support and O(1)-memory backpropagation.
PyTorch Implementation of Differentiable ODE Solvers This library provides ordinary differential equation (ODE) solvers implemented in PyTorch. Backpr
jupyter/ipython experiment containers for GPU and general RAM re-use
ipyexperiments jupyter/ipython experiment containers and utils for profiling and reclaiming GPU and general RAM, and detecting memory leaks. About Thi
A GPU-accelerated library containing highly optimized building blocks and an execution engine for data processing to accelerate deep learning training and inference applications.
NVIDIA DALI The NVIDIA Data Loading Library (DALI) is a library for data loading and pre-processing to accelerate deep learning applications. It provi
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch
Introduction This repository holds NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pytorch. Some of the code her
Massively parallel self-organizing maps: accelerate training on multicore CPUs, GPUs, and clusters
Somoclu Somoclu is a massively parallel implementation of self-organizing maps. It exploits multicore CPUs, it is able to rely on MPI for distributing
Decentralized deep learning in PyTorch. Built to train models on thousands of volunteers across the world.
Hivemind: decentralized deep learning in PyTorch Hivemind is a PyTorch library to train large neural networks across the Internet. Its intended usage
A high performance and generic framework for distributed DNN training
BytePS BytePS is a high performance and general distributed training framework. It supports TensorFlow, Keras, PyTorch, and MXNet, and can run on eith
PyTorch extensions for high performance and large scale training.
Description FairScale is a PyTorch extension library for high performance and large scale training on one or multiple machines/nodes. This library ext
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective. 10x Larger Models 10x Faster Trainin
Petastorm library enables single machine or distributed training and evaluation of deep learning models from datasets in Apache Parquet format. It supports ML frameworks such as Tensorflow, Pytorch, and PySpark and can be used from pure Python code.
Petastorm Contents Petastorm Installation Generating a dataset Plain Python API Tensorflow API Pytorch API Spark Dataset Converter API Analyzing petas
Distributed training framework for TensorFlow, Keras, PyTorch, and Apache MXNet.
Horovod Horovod is a distributed deep learning training framework for TensorFlow, Keras, PyTorch, and Apache MXNet. The goal of Horovod is to make dis
An open source reinforcement learning framework for training, evaluating, and deploying robust trading agents.
TensorTrade: Trade Efficiently with Reinforcement Learning TensorTrade is still in Beta, meaning it should be used very cautiously if used in producti
PyTorch implementation of "Contrast to Divide: self-supervised pre-training for learning with noisy labels"
Contrast to Divide: self-supervised pre-training for learning with noisy labels This is an official implementation of "Contrast to Divide: self-superv
Code for our paper at ECCV 2020: Post-Training Piecewise Linear Quantization for Deep Neural Networks
PWLQ Updates 2020/07/16 - We are working on getting permission from our institution to release our source code. We will release it once we are granted
Generate text images for training deep learning ocr model
New version release:https://github.com/oh-my-ocr/text_renderer Text Renderer Generate text images for training deep learning OCR model (e.g. CRNN). Su
A synthetic data generator for text recognition
TextRecognitionDataGenerator A synthetic data generator for text recognition What is it for? Generating text image samples to train an OCR software. N
Awesome multilingual OCR toolkits based on PaddlePaddle (practical ultra lightweight OCR system, provide data annotation and synthesis tools, support training and deployment among server, mobile, embedded and IoT devices)
English | 简体中文 Introduction PaddleOCR aims to create multilingual, awesome, leading, and practical OCR tools that help users train better models and a
Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics
Dataset Cartography Code for the paper Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics at EMNLP 2020. This repository cont
Code for the paper "Training GANs with Stronger Augmentations via Contrastive Discriminator" (ICLR 2021)
Training GANs with Stronger Augmentations via Contrastive Discriminator (ICLR 2021) This repository contains the code for reproducing the paper: Train
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch
This repository holds NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pytorch. Some of the code here will be included in upstream Pytorch eventually. The intention of Apex is to make up-to-date utilities available to users as quickly as possible.
Official code of our work, Unified Pre-training for Program Understanding and Generation [NAACL 2021].
PLBART Code pre-release of our work, Unified Pre-training for Program Understanding and Generation accepted at NAACL 2021. Note. A detailed documentat
[CVPR2021 Oral] UP-DETR: Unsupervised Pre-training for Object Detection with Transformers
UP-DETR: Unsupervised Pre-training for Object Detection with Transformers This is the official PyTorch implementation and models for UP-DETR paper: @a
Consistency Regularization for Adversarial Robustness
Consistency Regularization for Adversarial Robustness Official PyTorch implementation of Consistency Regularization for Adversarial Robustness by Jiho
A complete end-to-end demonstration in which we collect training data in Unity and use that data to train a deep neural network to predict the pose of a cube. This model is then deployed in a simulated robotic pick-and-place task.
Object Pose Estimation Demo This tutorial will go through the steps necessary to perform pose estimation with a UR3 robotic arm in Unity. You’ll gain
PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)
English | 简体中文 Welcome to the PaddlePaddle GitHub. PaddlePaddle, as the only independent R&D deep learning platform in China, has been officially open
Distributed training framework for TensorFlow, Keras, PyTorch, and Apache MXNet.
Horovod Horovod is a distributed deep learning training framework for TensorFlow, Keras, PyTorch, and Apache MXNet. The goal of Horovod is to make dis
BatchFlow helps you conveniently work with random or sequential batches of your data and define data processing and machine learning workflows even for datasets that do not fit into memory.
BatchFlow BatchFlow helps you conveniently work with random or sequential batches of your data and define data processing and machine learning workflo
Out-of-Core DataFrames for Python, ML, visualize and explore big tabular data at a billion rows per second 🚀
What is Vaex? Vaex is a high performance Python library for lazy Out-of-Core DataFrames (similar to Pandas), to visualize and explore big tabular data
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility
Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built
Simple tools for logging and visualizing, loading and training
TNT TNT is a library providing powerful dataloading, logging and visualization utilities for Python. It is closely integrated with PyTorch and is desi
Implementation of COCO-LM, Correcting and Contrasting Text Sequences for Language Model Pretraining, in Pytorch
COCO LM Pretraining (wip) Implementation of COCO-LM, Correcting and Contrasting Text Sequences for Language Model Pretraining, in Pytorch. They were a
网络协议2天集训
网络协议2天集训 抓包工具安装 Wireshark wireshark下载地址 Tcpdump CentOS yum install tcpdump -y Ubuntu apt-get install tcpdump -y k8s抓包测试环境 查看虚拟网卡veth pair 查看
Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly
Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly Code for this paper Ultra-Data-Efficient GAN Tra
Lazy Profiler is a simple utility to collect CPU, GPU, RAM and GPU Memory stats while the program is running.
lazyprofiler Lazy Profiler is a simple utility to collect CPU, GPU, RAM and GPU Memory stats while the program is running. Installation Use the packag
Sandwich Batch Normalization
Sandwich Batch Normalization Code for Sandwich Batch Normalization. Introduction We present Sandwich Batch Normalization (SaBN), an extremely easy imp
Simple tutorials on Pytorch DDP training
pytorch-distributed-training Distribute Dataparallel (DDP) Training on Pytorch Features Easy to study DDP training You can directly copy this code for
BitPack is a practical tool to efficiently save ultra-low precision/mixed-precision quantized models.
BitPack is a practical tool that can efficiently save quantized neural network models with mixed bitwidth.
Learning to Initialize Neural Networks for Stable and Efficient Training
GradInit This repository hosts the code for experiments in the paper, GradInit: Learning to Initialize Neural Networks for Stable and Efficient Traini
Reviving Iterative Training with Mask Guidance for Interactive Segmentation
This repository provides the source code for training and testing state-of-the-art click-based interactive segmentation models with the official PyTorch implementation
🏖 Easy training and deployment of seq2seq models.
Headliner Headliner is a sequence modeling library that eases the training and in particular, the deployment of custom sequence models for both resear
A framework for training and evaluating AI models on a variety of openly available dialogue datasets.
ParlAI (pronounced “par-lay”) is a python framework for sharing, training and testing dialogue models, from open-domain chitchat, to task-oriented dia
GAP-text2SQL: Learning Contextual Representations for Semantic Parsing with Generation-Augmented Pre-Training
GAP-text2SQL: Learning Contextual Representations for Semantic Parsing with Generation-Augmented Pre-Training Code and model from our AAAI 2021 paper
🏖 Easy training and deployment of seq2seq models.
Headliner Headliner is a sequence modeling library that eases the training and in particular, the deployment of custom sequence models for both resear
A framework for training and evaluating AI models on a variety of openly available dialogue datasets.
ParlAI (pronounced “par-lay”) is a python framework for sharing, training and testing dialogue models, from open-domain chitchat, to task-oriented dia
Numenta Platform for Intelligent Computing is an implementation of Hierarchical Temporal Memory (HTM), a theory of intelligence based strictly on the neuroscience of the neocortex.
NuPIC Numenta Platform for Intelligent Computing The Numenta Platform for Intelligent Computing (NuPIC) is a machine intelligence platform that implem
Fast and Easy Infinite Neural Networks in Python
Neural Tangents ICLR 2020 Video | Paper | Quickstart | Install guide | Reference docs | Release notes Overview Neural Tangents is a high-level neural
High-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently.
TL;DR Ignite is a high-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently. Click on the image to
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility
Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built
PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)
English | 简体中文 Welcome to the PaddlePaddle GitHub. PaddlePaddle, as the only independent R&D deep learning platform in China, has been officially open
Monitor Memory usage of Python code
Memory Profiler This is a python module for monitoring memory consumption of a process as well as line-by-line analysis of memory consumption for pyth
Diamond is a python daemon that collects system metrics and publishes them to Graphite (and others). It is capable of collecting cpu, memory, network, i/o, load and disk metrics. Additionally, it features an API for implementing custom collectors for gathering metrics from almost any source.
Diamond Diamond is a python daemon that collects system metrics and publishes them to Graphite (and others). It is capable of collecting cpu, memory,
Scalene: a high-performance, high-precision CPU and memory profiler for Python
scalene: a high-performance CPU and memory profiler for Python by Emery Berger 中文版本 (Chinese version) About Scalene % pip install -U scalene Scalen
Development tool to measure, monitor and analyze the memory behavior of Python objects in a running Python application.
README for pympler Before installing Pympler, try it with your Python version: python setup.py try If any errors are reported, check whether your Pyt
Monitor Memory usage of Python code
Memory Profiler This is a python module for monitoring memory consumption of a process as well as line-by-line analysis of memory consumption for pyth
Cross-platform lib for process and system monitoring in Python
Home Install Documentation Download Forum Blog Funding What's new Summary psutil (process and system utilities) is a cross-platform library for retrie
FlatBuffers: Memory Efficient Serialization Library
FlatBuffers FlatBuffers is a cross platform serialization library architected for maximum memory efficiency. It allows you to directly access serializ
Implementation of Feedback Transformer in Pytorch
Feedback Transformer - Pytorch Simple implementation of Feedback Transformer in Pytorch. They improve on Transformer-XL by having each token have acce
A PyTorch Toolbox for Face Recognition
FaceX-Zoo FaceX-Zoo is a PyTorch toolbox for face recognition. It provides a training module with various supervisory heads and backbones towards stat
Open-AI's DALL-E for large scale training in mesh-tensorflow.
DALL-E in Mesh-Tensorflow [WIP] Open-AI's DALL-E in Mesh-Tensorflow. If this is similarly efficient to GPT-Neo, this repo should be able to train mode
The algorithm performs a simple user registration (Name, CPF, E-mail and Telephone) in an Amazon RDS database and also performs the storage, training and facial recognition of the user's face to identify the users already registered in the system in a next time the user is seen.
Registration form with RDS AWS database and facial recognition via OpenCV The algorithm performs a simple user registration (Name, CPF, E-mail and Tel
A framework for joint super-resolution and image synthesis, without requiring real training data
SynthSR This repository contains code to train a Convolutional Neural Network (CNN) for Super-resolution (SR), or joint SR and data synthesis. The met
Backtest 1000s of minute-by-minute trading algorithms for training AI with automated pricing data from: IEX, Tradier and FinViz. Datasets and trading performance automatically published to S3 for building AI training datasets for teaching DNNs how to trade. Runs on Kubernetes and docker-compose. 150 million trading history rows generated from +5000 algorithms. Heads up: Yahoo's Finance API was disabled on 2019-01-03 https://developer.yahoo.com/yql/
Stock Analysis Engine Build and tune investment algorithms for use with artificial intelligence (deep neural networks) with a distributed stack for ru
Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk
Annoy Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given quer
Massively parallel self-organizing maps: accelerate training on multicore CPUs, GPUs, and clusters
Somoclu Somoclu is a massively parallel implementation of self-organizing maps. It exploits multicore CPUs, it is able to rely on MPI for distributing
Simple, realtime visualization of neural network training performance.
pastalog Simple, realtime visualization server for training neural networks. Use with Lasagne, Keras, Tensorflow, Torch, Theano, and basically everyth
Colibri core is an NLP tool as well as a C++ and Python library for working with basic linguistic constructions such as n-grams and skipgrams (i.e patterns with one or more gaps, either of fixed or dynamic size) in a quick and memory-efficient way. At the core is the tool ``colibri-patternmodeller`` whi ch allows you to build, view, manipulate and query pattern models.
Colibri Core by Maarten van Gompel, [email protected], Radboud University Nijmegen Licensed under GPLv3 (See http://www.gnu.org/licenses/gpl-3.0.html
Determined: Deep Learning Training Platform
Determined: Deep Learning Training Platform Determined is an open-source deep learning training platform that makes building models fast and easy. Det
Deep Learning GPU Training System
DIGITS DIGITS (the Deep Learning GPU Training System) is a webapp for training deep learning models. The currently supported frameworks are: Caffe, To
Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk
Annoy Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given quer
Numenta Platform for Intelligent Computing is an implementation of Hierarchical Temporal Memory (HTM), a theory of intelligence based strictly on the neuroscience of the neocortex.
NuPIC Numenta Platform for Intelligent Computing The Numenta Platform for Intelligent Computing (NuPIC) is a machine intelligence platform that implem
Cross-platform lib for process and system monitoring in Python
Home Install Documentation Download Forum Blog Funding What's new Summary psutil (process and system utilities) is a cross-platform library for retrie
Monitor Memory usage of Python code
Memory Profiler This is a python module for monitoring memory consumption of a process as well as line-by-line analysis of memory consumption for pyth