110 Repositories
Python probabilistic-circuits Libraries
[CVPR 2022 Oral] EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation
EPro-PnP EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation In CVPR 2022 (Oral). [paper] Hanshen
An official repository for tutorials of Probabilistic Modelling and Reasoning (2021/2022) - a University of Edinburgh master's course.
PMR computer tutorials on HMMs (2021-2022) This is a repository for computer tutorials of Probabilistic Modelling and Reasoning (2021/2022) - a Univer
Repo for the Tutorials of Day1-Day3 of the Nordic Probabilistic AI School 2021 (https://probabilistic.ai/)
ProbAI 2021 - Probabilistic Programming and Variational Inference Tutorial with Pryo Day 1 (June 14) Slides Notebook: students_PPLs_Intro Notebook: so
Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in Pytorch
Retrieval-Augmented Denoising Diffusion Probabilistic Models (wip) Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in P
scAR (single-cell Ambient Remover) is a package for data denoising in single-cell omics.
scAR scAR (single cell Ambient Remover) is a package for denoising multiple single cell omics data. It can be used for multiple tasks, such as, sgRNA
Kglab - an abstraction layer in Python for building knowledge graphs
Graph Data Science: an abstraction layer in Python for building knowledge graphs, integrated with popular graph libraries – atop Pandas, RDFlib, pySHACL, RAPIDS, NetworkX, iGraph, PyVis, pslpython, pyarrow, etc.
Decoupled Smoothing in Probabilistic Soft Logic
Decoupled Smoothing in Probabilistic Soft Logic Experiments for "Decoupled Smoothing in Probabilistic Soft Logic". Probabilistic Soft Logic Probabilis
Generative Flow Networks for Discrete Probabilistic Modeling
Energy-based GFlowNets Code for Generative Flow Networks for Discrete Probabilistic Modeling by Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Vo
Mapomatic - Automatic mapping of compiled circuits to low-noise sub-graphs
mapomatic Automatic mapping of compiled circuits to low-noise sub-graphs Overvie
An Empirical Review of Optimization Techniques for Quantum Variational Circuits
QVC Optimizer Review Code for the paper "An Empirical Review of Optimization Techniques for Quantum Variational Circuits". Each of the python files ca
A python package to adjust the bias of probabilistic forecasts/hindcasts using "Mean and Variance Adjustment" method.
Documentation A python package to adjust the bias of probabilistic forecasts/hindcasts using "Mean and Variance Adjustment" method. Read documentation
OpenIPDM is a MATLAB open-source platform that stands for infrastructures probabilistic deterioration model
Open-Source Toolbox for Infrastructures Probabilistic Deterioration Modelling OpenIPDM is a MATLAB open-source platform that stands for infrastructure
Statistical & Probabilistic Analysis of Store Sales, University Survey, & Manufacturing data
Statistical_Modelling Statistical & Probabilistic Analysis of Store Sales, University Survey, & Manufacturing data Statistical Methods for Decision Ma
A framework for multi-step probabilistic time-series/demand forecasting models
JointDemandForecasting.py A framework for multi-step probabilistic time-series/demand forecasting models File stucture JointDemandForecasting contains
Codes for "CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation"
CSDI This is the github repository for the NeurIPS 2021 paper "CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation
Pytorch-diffusion - A basic PyTorch implementation of 'Denoising Diffusion Probabilistic Models'
PyTorch implementation of 'Denoising Diffusion Probabilistic Models' This reposi
Minimal diffusion models - Minimal code and simple experiments to play with Denoising Diffusion Probabilistic Models (DDPMs)
Minimal code and simple experiments to play with Denoising Diffusion Probabilist
A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised Learning
LABES This is the code for EMNLP 2020 paper "A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised L
GDSHelpers is an open-source package for automatized pattern generation for nano-structuring.
GDSHelpers GDSHelpers in an open-source package for automatized pattern generation for nano-structuring. It allows exporting the pattern in the GDSII-
A simple electrical network analyzer, BASED ON computer-aided design.
Electrical Network Analyzer A simple electrical network analyzer. Given the oriented graph of the electrical network (circut), BASED ON computer-aided
Implementation of the final project of the course DDA6309 Probabilistic Graphical Model
Task-aware Joint CWS and POS (TCwsPos) This is the implementation of the final project of the course DDA6309 Probabilistic Graphical Models, The Chine
Python Libraries with functions and constants related to electrical engineering.
ElectricPy Electrical-Engineering-for-Python Python Libraries with functions and constants related to electrical engineering. The functions and consta
A library that allows for inference on probabilistic models
Bean Machine Overview Bean Machine is a probabilistic programming language for inference over statistical models written in the Python language using
Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
Parameter Efficient Deep Probabilistic Forecasting
PEDPF Parameter Efficient Deep Probabilistic Forecasting (PEDPF) is a repository containing code to run experiments for several deep learning based pr
PyTorch implementation of probabilistic deep forecast applied to air quality.
Probabilistic Deep Forecast PyTorch implementation of a paper, titled: Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting
Implementation of Google Brain's WaveGrad high-fidelity vocoder
WaveGrad Implementation (PyTorch) of Google Brain's high-fidelity WaveGrad vocoder (paper). First implementation on GitHub with high-quality generatio
Reference implementation for Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Diffusion Probabilistic Models This repository provides a reference implementation of the method described in the paper: Deep Unsupervised Learning us
Denoising Diffusion Probabilistic Models
Denoising Diffusion Probabilistic Models Jonathan Ho, Ajay Jain, Pieter Abbeel Paper: https://arxiv.org/abs/2006.11239 Website: https://hojonathanho.g
Diffusion Probabilistic Models for 3D Point Cloud Generation (CVPR 2021)
Diffusion Probabilistic Models for 3D Point Cloud Generation [Paper] [Code] The official code repository for our CVPR 2021 paper "Diffusion Probabilis
PyTorch implementation for "HyperSPNs: Compact and Expressive Probabilistic Circuits", NeurIPS 2021
HyperSPN This repository contains code for the paper: HyperSPNs: Compact and Expressive Probabilistic Circuits "HyperSPNs: Compact and Expressive Prob
This repository is for the preprint "A generative nonparametric Bayesian model for whole genomes"
BEAR Overview This repository contains code associated with the preprint A generative nonparametric Bayesian model for whole genomes (2021), which pro
Probabilistic Tensor Decomposition of Neural Population Spiking Activity
Probabilistic Tensor Decomposition of Neural Population Spiking Activity Matlab (recommended) and Python (in developement) implementations of Soulat e
'Aligned mixture of latent dynamical systems' (amLDS) for stimulus decoding probabilistic manifold alignment across animals. P. Herrero-Vidal et al. NeurIPS 2021 code.
Across-animal odor decoding by probabilistic manifold alignment (NeurIPS 2021) This repository is the official implementation of aligned mixture of la
Code for "On Memorization in Probabilistic Deep Generative Models"
On Memorization in Probabilistic Deep Generative Models This repository contains the code necessary to reproduce the experiments in On Memorization in
Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral]
Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral] Learning to Disambiguate Strongly In
This repository contains the code used for the implementation of the paper "Probabilistic Regression with HuberDistributions"
Public_prob_regression_with_huber_distributions This repository contains the code used for the implementation of the paper "Probabilistic Regression w
zeus is a Python implementation of the Ensemble Slice Sampling method.
zeus is a Python implementation of the Ensemble Slice Sampling method. Fast & Robust Bayesian Inference, Efficient Markov Chain Monte Carlo (MCMC), Bl
Dynamical movement primitives (DMPs), probabilistic movement primitives (ProMPs), spatially coupled bimanual DMPs.
Movement Primitives Movement primitives are a common group of policy representations in robotics. There are many different types and variations. This
Official code for: A Probabilistic Hard Attention Model For Sequentially Observed Scenes
"A Probabilistic Hard Attention Model For Sequentially Observed Scenes" Authors: Samrudhdhi Rangrej, James Clark Accepted to: BMVC'21 A recurrent atte
pymc-learn: Practical Probabilistic Machine Learning in Python
pymc-learn: Practical Probabilistic Machine Learning in Python Contents: Github repo What is pymc-learn? Quick Install Quick Start Index What is pymc-
Identifies the faulty wafer before it can be used for the fabrication of integrated circuits and, in photovoltaics, to manufacture solar cells.
Identifies the faulty wafer before it can be used for the fabrication of integrated circuits and, in photovoltaics, to manufacture solar cells. The project retrains itself after every prediction, making it more robust and generalized over time.
gdsfactory is an EDA (electronics design automation) tool to Layout Integrated Circuits.
gdsfactory 3.5.5 gdsfactory is an EDA (electronics design automation) tool to Layout Integrated Circuits. It is build on top of phidl gdspy and klayou
Code for "Long Range Probabilistic Forecasting in Time-Series using High Order Statistics"
Long Range Probabilistic Forecasting in Time-Series using High Order Statistics This is the code produced as part of the paper Long Range Probabilisti
Probabilistic-Monocular-3D-Human-Pose-Estimation-with-Normalizing-Flows
Probabilistic-Monocular-3D-Human-Pose-Estimation-with-Normalizing-Flows This is the official implementation of the ICCV 2021 Paper "Probabilistic Mono
'Solving the sampling problem of the Sycamore quantum supremacy circuits
solve_sycamore This repo contains data, contraction code, and contraction order for the paper ''Solving the sampling problem of the Sycamore quantum s
This repository contains the source code of an efficient 1D probabilistic model for music time analysis proposed in ICASSP2022 venue.
Jump Reward Inference for 1D Music Rhythmic State Spaces An implementation of the probablistic jump reward inference model for music rhythmic informat
A denoising diffusion probabilistic model synthesises galaxies that are qualitatively and physically indistinguishable from the real thing.
Realistic galaxy simulation via score-based generative models Official code for 'Realistic galaxy simulation via score-based generative models'. We us
Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs
Implementation for the paper: Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs, Nurendra Choudhary, Nikhil Rao, Sumeet Ka
Code repository for the paper: Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild (ICCV 2021)
Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild Akash Sengupta, Ignas Budvytis, Robert
Hierarchical probabilistic 3D U-Net, with attention mechanisms (—𝘈𝘵𝘵𝘦𝘯𝘵𝘪𝘰𝘯 𝘜-𝘕𝘦𝘵, 𝘚𝘌𝘙𝘦𝘴𝘕𝘦𝘵) and a nested decoder structure with deep supervision (—𝘜𝘕𝘦𝘵++).
Hierarchical probabilistic 3D U-Net, with attention mechanisms (—𝘈𝘵𝘵𝘦𝘯𝘵𝘪𝘰𝘯 𝘜-𝘕𝘦𝘵, 𝘚𝘌𝘙𝘦𝘴𝘕𝘦𝘵) and a nested decoder structure with deep supervision (—𝘜𝘕𝘦𝘵++). Built in TensorFlow 2.5. Configured for voxel-level clinically significant prostate cancer detection in multi-channel 3D bpMRI scans.
Extremely simple and fast extreme multi-class and multi-label classifiers.
napkinXC napkinXC is an extremely simple and fast library for extreme multi-class and multi-label classification, that focus of implementing various m
NeurIPS'21: Probabilistic Margins for Instance Reweighting in Adversarial Training (Pytorch implementation).
source code for NeurIPS21 paper robabilistic Margins for Instance Reweighting in Adversarial Training
First-Order Probabilistic Programming Language
FOPPL: A First-Order Probabilistic Programming Language This is an implementation of FOPPL, an S-expression based probabilistic programming language d
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)
Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee
High-quality implementations of standard and SOTA methods on a variety of tasks.
Uncertainty Baselines The goal of Uncertainty Baselines is to provide a template for researchers to build on. The baselines can be a starting point fo
A Library for Modelling Probabilistic Hierarchical Graphical Models in PyTorch
A Library for Modelling Probabilistic Hierarchical Graphical Models in PyTorch
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)
Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee
Cirq is a Python library for writing, manipulating, and optimizing quantum circuits and running them against quantum computers and simulators
Cirq is a Python library for writing, manipulating, and optimizing quantum circuits and running them against quantum computers and simulators. Install
A Python library for Deep Probabilistic Modeling
Abstract DeeProb-kit is a Python library that implements deep probabilistic models such as various kinds of Sum-Product Networks, Normalizing Flows an
Client library for accessing IQM quantum computers
IQM Client Client-side library for connecting to an IQM quantum computer. Installation IQM client is not intended to be used directly by human users.
ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (ICCV 2021 Oral)
ILVR + ADM This is the implementation of ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (ICCV 2021 Oral). This repository is h
Unoffical implementation about Image Super-Resolution via Iterative Refinement by Pytorch
Image Super-Resolution via Iterative Refinement Paper | Project Brief This is a unoffical implementation about Image Super-Resolution via Iterative Re
(ICCV 2021) ProHMR - Probabilistic Modeling for Human Mesh Recovery
ProHMR - Probabilistic Modeling for Human Mesh Recovery Code repository for the paper: Probabilistic Modeling for Human Mesh Recovery Nikos Kolotouros
Sum-Product Probabilistic Language
Sum-Product Probabilistic Language SPPL is a probabilistic programming language that delivers exact solutions to a broad range of probabilistic infere
An all-in-one application to visualize multiple different local path planning algorithms
Table of Contents Table of Contents Local Planner Visualization Project (LPVP) Features Installation/Usage Local Planners Probabilistic Roadmap (PRM)
Pytorch implementation of "Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech"
GradTTS Unofficial Pytorch implementation of "Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech" (arxiv) About this repo This is an unoffic
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling @ INTERSPEECH 2021 Accepted
NU-Wave — Official PyTorch Implementation NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling Junhyeok Lee, Seungu Han @ MINDsLab Inc
Denoising Diffusion Probabilistic Models
Denoising Diffusion Probabilistic Models This repo contains code for DDPM training. Based on Denoising Diffusion Probabilistic Models, Improved Denois
DeepProbLog is an extension of ProbLog that integrates Probabilistic Logic Programming with deep learning by introducing the neural predicate.
DeepProbLog DeepProbLog is an extension of ProbLog that integrates Probabilistic Logic Programming with deep learning by introducing the neural predic
Probabilistic Cross-Modal Embedding (PCME) CVPR 2021
Probabilistic Cross-Modal Embedding (PCME) CVPR 2021 Official Pytorch implementation of PCME | Paper Sanghyuk Chun1 Seong Joon Oh1 Rafael Sampaio de R
Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking
Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking (CVPR 2021) Pytorch implementation of the ArTIST motion model. In this repo
Python code for "Machine learning: a probabilistic perspective" (2nd edition)
Python code for "Machine learning: a probabilistic perspective" (2nd edition)
A denoising diffusion probabilistic model (DDPM) tailored for conditional generation of protein distograms
Denoising Diffusion Probabilistic Model for Proteins Implementation of Denoising Diffusion Probabilistic Model in Pytorch. It is a new approach to gen
Official PyTorch implementation for FastDPM, a fast sampling algorithm for diffusion probabilistic models
Official PyTorch implementation for "On Fast Sampling of Diffusion Probabilistic Models". FastDPM generation on CIFAR-10, CelebA, and LSUN datasets. S
Probabilistic Gradient Boosting Machines
PGBM Probabilistic Gradient Boosting Machines (PGBM) is a probabilistic gradient boosting framework in Python based on PyTorch/Numba, developed by Air
Adversarial Attacks on Probabilistic Autoregressive Forecasting Models.
Attack-Probabilistic-Models This is the source code for Adversarial Attacks on Probabilistic Autoregressive Forecasting Models. This repository contai
Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis in JAX
SYMPAIS: Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis Overview | Installation | Documentation | Examples | Notebo
Registration Loss Learning for Deep Probabilistic Point Set Registration
RLLReg This repository contains a Pytorch implementation of the point set registration method RLLReg. Details about the method can be found in the 3DV
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling For Official repo of NU-Wave: A Diffusion Probabilistic Model for Neural Audio Up
pyprobables is a pure-python library for probabilistic data structures
pyprobables is a pure-python library for probabilistic data structures. The goal is to provide the developer with a pure-python implementation of common probabilistic data-structures to use in their work.
Deep Probabilistic Programming Course @ DIKU
Deep Probabilistic Programming Course @ DIKU
Discord Bot that leverages the idea of nested containers using podman, runs untrusted user input, executes Quantum Circuits, allows users to refer to the Qiskit Documentation, and provides the ability to search questions on the Quantum Computing StackExchange.
Discord Bot that leverages the idea of nested containers using podman, runs untrusted user input, executes Quantum Circuits, allows users to refer to the Qiskit Documentation, and provides the ability to search questions on the Quantum Computing StackExchange.
Probabilistic Programming in Python: Bayesian Modeling and Probabilistic Machine Learning with Aesara
PyMC3 is a Python package for Bayesian statistical modeling and Probabilistic Machine Learning focusing on advanced Markov chain Monte Carlo (MCMC) an
RecSim NG: Toward Principled Uncertainty Modeling for Recommender Ecosystems
RecSim NG, a probabilistic platform for multi-agent recommender systems simulation. RecSimNG is a scalable, modular, differentiable simulator implemented in Edward2 and TensorFlow. It offers: a powerful, general probabilistic programming language for agent-behavior specification;
PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning
PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning Warning: This is a rapidly evolving research prototype.
A probabilistic programming library for Bayesian deep learning, generative models, based on Tensorflow
ZhuSuan is a Python probabilistic programming library for Bayesian deep learning, which conjoins the complimentary advantages of Bayesian methods and
A probabilistic programming language in TensorFlow. Deep generative models, variational inference.
Edward is a Python library for probabilistic modeling, inference, and criticism. It is a testbed for fast experimentation and research with probabilis
A Python package for Bayesian forecasting with object-oriented design and probabilistic models under the hood.
Disclaimer This project is stable and being incubated for long-term support. It may contain new experimental code, for which APIs are subject to chang
Functional tensors for probabilistic programming
Funsor Funsor is a tensor-like library for functions and distributions. See Functional tensors for probabilistic programming for a system description.
Python Library for learning (Structure and Parameter) and inference (Statistical and Causal) in Bayesian Networks.
pgmpy pgmpy is a python library for working with Probabilistic Graphical Models. Documentation and list of algorithms supported is at our official sit
Fast, flexible and easy to use probabilistic modelling in Python.
Please consider citing the JMLR-MLOSS Manuscript if you've used pomegranate in your academic work! pomegranate is a package for building probabilistic
Deep universal probabilistic programming with Python and PyTorch
Getting Started | Documentation | Community | Contributing Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. Notab
Probabilistic reasoning and statistical analysis in TensorFlow
TensorFlow Probability TensorFlow Probability is a library for probabilistic reasoning and statistical analysis in TensorFlow. As part of the TensorFl
Probabilistic time series modeling in Python
GluonTS - Probabilistic Time Series Modeling in Python GluonTS is a Python toolkit for probabilistic time series modeling, built around Apache MXNet (
Simulating Sycamore quantum circuits classically using tensor network algorithm.
Simulating the Sycamore quantum supremacy circuit This repo contains data we have obtained in simulating the Sycamore quantum supremacy circuits with
Modular Probabilistic Programming on MXNet
MXFusion | | | | Tutorials | Documentation | Contribution Guide MXFusion is a modular deep probabilistic programming library. With MXFusion Modules yo
The Python ensemble sampling toolkit for affine-invariant MCMC
emcee The Python ensemble sampling toolkit for affine-invariant MCMC emcee is a stable, well tested Python implementation of the affine-invariant ense
Probabilistic Programming and Statistical Inference in PyTorch
PtStat Probabilistic Programming and Statistical Inference in PyTorch. Introduction This project is being developed during my time at Cogent Labs. The
Supervised domain-agnostic prediction framework for probabilistic modelling
A supervised domain-agnostic framework that allows for probabilistic modelling, namely the prediction of probability distributions for individual data