722 Repositories
Python protocol-2day-training Libraries
Code for Reciprocal Adversarial Learning for Brain Tumor Segmentation: A Solution to BraTS Challenge 2021 Segmentation Task
BRATS 2021 Solution For Segmentation Task This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmenta
This repo generates the training data and the model for Morpheus-Deblend
Morpheus-Deblend This repo generates the training data and the model for Morpheus-Deblend. This is the active development repo for the project and as
Sukoshi is a proof-of-concept Python implant that leverages the MQTT protocol for C2 and uses AWS IoT Core as infrastructure.
Sukoshi | 少し Overview Sukoshi is a proof-of-concept Python implant that leverages the MQTT protocol for C2 and uses AWS IoT Core as infrastructure. It
Tron Wallet (TRX) Crack Finder With Python Just 64 Line
TRXGEN Tron Wallet Finder and Crack With Python Tron Wallet (TRX) Crack Finder With Python Just 64 Line My tools [pycharm + anaconda3 + python3.8 + vi
The code for our paper Semi-Supervised Learning with Multi-Head Co-Training
Semi-Supervised Learning with Multi-Head Co-Training (PyTorch) Abstract Co-training, extended from self-training, is one of the frameworks for semi-su
Statistical Random Number Generator Attack Against The Kirchhoff-law-johnson-noise (Kljn) Secure Key Exchange Protocol
Statistical Random Number Generator Attack Against The Kirchhoff-law-johnson-noise (Kljn) Secure Key Exchange Protocol
Explores the python bytecode, provides some tools to access it for fun and profit.
Pyasmtools - looking at the python bytecode for fun and profit. The pyasmtools library is made up of two parts A python bytecode disassembler . See Py
A Python module for the generation and training of an entry-level feedforward neural network.
ff-neural-network A Python module for the generation and training of an entry-level feedforward neural network. This repository serves as a repurposin
Training a Resilient Q-Network against Observational Interference, Causal Inference Q-Networks
Obs-Causal-Q-Network AAAI 2022 - Training a Resilient Q-Network against Observational Interference Preprint | Slides | Colab Demo | Environment Setup
Intel® Neural Compressor is an open-source Python library running on Intel CPUs and GPUs
Intel® Neural Compressor targeting to provide unified APIs for network compression technologies, such as low precision quantization, sparsity, pruning, knowledge distillation, across different deep learning frameworks to pursue optimal inference performance.
Implements a polyglot REPL which supports multiple languages and shared meta-object protocol scope between REPLs.
MetaCall Polyglot REPL Description This repository implements a Polyglot REPL which shares the state of the meta-object protocol between the REPLs. Us
Soft actor-critic is a deep reinforcement learning framework for training maximum entropy policies in continuous domains.
This repository is no longer maintained. Please use our new Softlearning package instead. Soft Actor-Critic Soft actor-critic is a deep reinforcement
Supervised 3D Pre-training on Large-scale 2D Natural Image Datasets for 3D Medical Image Analysis
Introduction This is an implementation of our paper Supervised 3D Pre-training on Large-scale 2D Natural Image Datasets for 3D Medical Image Analysis.
for a paper about leveraging discourse markers for training new models
TSLM-DISCOURSE-MARKERS Scope This repository contains: (1) Code to extract discourse markers from wikipedia (TSA). (1) Code to extract significant dis
Deep learning with TensorFlow and earth observation data.
Deep Learning with TensorFlow and EO Data Complete file set for Jupyter Book Autor: Development Seed Date: 04 October 2021 ISBN: (to come) Notebook tu
Official Implementation for Fast Training of Neural Lumigraph Representations using Meta Learning.
Fast Training of Neural Lumigraph Representations using Meta Learning Project Page | Paper | Data Alexander W. Bergman, Petr Kellnhofer, Gordon Wetzst
Teaches a student network from the knowledge obtained via training of a larger teacher network
Distilling-the-knowledge-in-neural-network Teaches a student network from the knowledge obtained via training of a larger teacher network This is an i
This is the offline-training-pipeline for our project.
offline-training-pipeline This is the offline-training-pipeline for our project. We adopt the offline training and online prediction Machine Learning
Markdown Presentations for Tech Conferences, Training, Developer Advocates, and Educators.
March 1, 2021: Service on gitpitch.com has been shutdown permanently. GitPitch 4.0 Docs Twitter About Watch the Introducing GitPitch 4.0 Video Visit t
Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training Consistency Shift (ICCV 2021)
Π-NAS This repository provides the evaluation code of our submitted paper: Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training
Learnable Boundary Guided Adversarial Training (ICCV2021)
Learnable Boundary Guided Adversarial Training This repository contains the implementation code for the ICCV2021 paper: Learnable Boundary Guided Adve
Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data
Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data This is the official PyTorch implementation of the SeCo paper: @articl
Gearbox-vyper-contracts - Auxillary contracts for the Gearbox Protocol written in Vyper
Gearbox Vyper Contracts Auxillary contracts for the Gearbox Protocol written in
Chinese version of GPT2 training code, using BERT tokenizer.
GPT2-Chinese Description Chinese version of GPT2 training code, using BERT tokenizer or BPE tokenizer. It is based on the extremely awesome repository
TensorFlow implementation of AlexNet and its training and testing on ImageNet ILSVRC 2012 dataset
AlexNet training on ImageNet LSVRC 2012 This repository contains an implementation of AlexNet convolutional neural network and its training and testin
Amazon SageMaker Delta Sharing Examples
This repository contains examples and related resources showing you how to preprocess, train, and serve your models using Amazon SageMaker with data fetched from Delta Lake.
A fully decentralized protocol for private transactions FAST snipe BUY token on LUANCH after add LIQUIDITY
TORNADO CASH Pancakeswap Sniper BOT 2022-V1 (MAC WINDOWS ANDROID LINUX) ⭐️ A fully decentralized protocol for private and safe transactions ⭐️ AUTO DO
The full training script for Enformer (Tensorflow Sonnet) on TPU clusters
Enformer TPU training script (wip) The full training script for Enformer (Tensorflow Sonnet) on TPU clusters, in an effort to migrate the model to pyt
Training DALL-E with volunteers from all over the Internet using hivemind and dalle-pytorch (NeurIPS 2021 demo)
Training DALL-E with volunteers from all over the Internet This repository is a part of the NeurIPS 2021 demonstration "Training Transformers Together
Pancakeswap Sniper BOT - TORNADO CASH Proxy (MAC WINDOWS ANDROID LINUX) A fully decentralized protocol for private transactions
TORNADO CASH Proxy Pancakeswap Sniper BOT 2022-V1 (MAC WINDOWS ANDROID LINUX) ⭐️ A fully decentralized protocol for private transactions ⭐️ AUTO DOWNL
Crowd sourced training data for Rasa NLU models
NLU Training Data Crowd-sourced training data for the development and testing of Rasa NLU models. If you're interested in grabbing some data feel free
Implementations of LSTM: A Search Space Odyssey variants and their training results on the PTB dataset.
An LSTM Odyssey Code for training variants of "LSTM: A Search Space Odyssey" on Fomoro. Check out the blog post. Training Install TensorFlow. Clone th
Contrastive unpaired image-to-image translation, faster and lighter training than cyclegan (ECCV 2020, in PyTorch)
Contrastive Unpaired Translation (CUT) video (1m) | video (10m) | website | paper We provide our PyTorch implementation of unpaired image-to-image tra
Official PyTorch implementation of the paper: DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample
DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample (ICCV 2021 Oral) Project | Paper Official PyTorch implementation of the pape
Suricata Language Server is an implementation of the Language Server Protocol for Suricata signatures
Suricata Language Server is an implementation of the Language Server Protocol for Suricata signatures. It adds syntax check, hints and auto-completion to your preferred editor once it is configured.
Augmented CLIP - Training simple models to predict CLIP image embeddings from text embeddings, and vice versa.
Train aug_clip against laion400m-embeddings found here: https://laion.ai/laion-400-open-dataset/ - note that this used the base ViT-B/32 CLIP model. S
TrainingBike - Code, models and schematics I've used to interface my stationary training bike with PC.
TrainingBike Code, models and schematics I've used to interface my stationary training bike with PC. You can find more information about the project i
BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work
BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work. For this project, I used the sigmoid function as an activation function along with stochastic gradient descent to adjust the weights and biases.
U-2-Net: U Square Net - Modified for paired image training of style transfer
U2-Net: U Square Net Modified for paired image training of style transfer This is an unofficial repo making use of the code which was made available b
StarCraft II Client - protocol definitions used to communicate with StarCraft II.
Overview The StarCraft II API is an interface that provides full external control of StarCraft II. This API exposes functionality for developing softw
StyleGAN2-ADA-training-jupyter - Training custom datasets in styleGAN2-ADA by NVIDIA using Jupyter
styleGAN2-ADA-training-jupyter Training custom datasets in styleGAN2-ADA on Jupyter Official StyleGAN2-ADA by NIVIDIA Paper Training Generative Advers
CIFAR-10_train-test - training and testing codes for dataset CIFAR-10
CIFAR-10_train-test - training and testing codes for dataset CIFAR-10
Training Cifar-10 Classifier Using VGG16
opevcvdl-hw3 This project uses pytorch and Qt to achieve the requirements. Version Python 3.6 opencv-contrib-python 3.4.2.17 Matplotlib 3.1.1 pyqt5 5.
SOTA easy to use PyTorch-based DL training library
Easily train or fine-tune SOTA computer vision models from one training repository. SuperGradients Introduction Welcome to SuperGradients, a free open
“Robust Lightweight Facial Expression Recognition Network with Label Distribution Training”, AAAI 2021.
EfficientFace Zengqun Zhao, Qingshan Liu, Feng Zhou. "Robust Lightweight Facial Expression Recognition Network with Label Distribution Training". AAAI
PyTorch Lightning + Hydra. A feature-rich template for rapid, scalable and reproducible ML experimentation with best practices. ⚡🔥⚡
Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re
Pytorch implementation of paper Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data
Pytorch implementation of paper Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data
A simple consistency training framework for semi-supervised image semantic segmentation
PseudoSeg: Designing Pseudo Labels for Semantic Segmentation PseudoSeg is a simple consistency training framework for semi-supervised image semantic s
Semi-Supervised Semantic Segmentation with Cross-Consistency Training (CCT)
Semi-Supervised Semantic Segmentation with Cross-Consistency Training (CCT) Paper, Project Page This repo contains the official implementation of CVPR
Reduce end to end training time from days to hours (or hours to minutes), and energy requirements/costs by an order of magnitude using coresets and data selection.
COResets and Data Subset selection Reduce end to end training time from days to hours (or hours to minutes), and energy requirements/costs by an order
Implementation of ICLR 2020 paper "Revisiting Self-Training for Neural Sequence Generation"
Self-Training for Neural Sequence Generation This repo includes instructions for running noisy self-training algorithms from the following paper: Revi
implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning"
MarginGAN This repository is the implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning". 1."preliminary" is the imp
Training neural models with structured signals.
Neural Structured Learning in TensorFlow Neural Structured Learning (NSL) is a new learning paradigm to train neural networks by leveraging structured
PyTorch implementation for Graph Contrastive Learning with Augmentations
Graph Contrastive Learning with Augmentations PyTorch implementation for Graph Contrastive Learning with Augmentations [poster] [appendix] Yuning You*
CCCL: Contrastive Cascade Graph Learning.
CCGL: Contrastive Cascade Graph Learning This repo provides a reference implementation of Contrastive Cascade Graph Learning (CCGL) framework as descr
In this project, two programs can help you take full agvantage of time on the model training with a remote server
In this project, two programs can help you take full agvantage of time on the model training with a remote server, which can push notification to your phone about the information during model training, like the model indices and unexpected interrupts. Then you can do something in time for your work.
GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training @ KDD 2020
GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training Original implementation for paper GCC: Graph Contrastive Coding for Graph Neural N
Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking."
Expert-Linking Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking." This is
Algofi Python SDK is useful for developers who want to programatically interact with the Algofi lending protocol
algofi-py-sdk Algofi Python SDK Documentation https://algofi-py-sdk.readthedocs.
eXPeditious Data Transfer
xpdt: eXPeditious Data Transfer About xpdt is (yet another) language for defining data-types and generating code for serializing and deserializing the
Implementation of an attack on a tropical algebra discrete logarithm based protocol
Implementation of an attack on a tropical algebra discrete logarithm based protocol This code implements the attack detailed in the paper: On the trop
Reproduce results and replicate training fo T0 (Multitask Prompted Training Enables Zero-Shot Task Generalization)
T-Zero This repository serves primarily as codebase and instructions for training, evaluation and inference of T0. T0 is the model developed in Multit
Align and Prompt: Video-and-Language Pre-training with Entity Prompts
ALPRO Align and Prompt: Video-and-Language Pre-training with Entity Prompts [Paper] Dongxu Li, Junnan Li, Hongdong Li, Juan Carlos Niebles, Steven C.H
Pre-Training Graph Neural Networks for Cold-Start Users and Items Representation.
Pretrain-Recsys This is our Tensorflow implementation for our WSDM 2021 paper: Bowen Hao, Jing Zhang, Hongzhi Yin, Cuiping Li, Hong Chen. Pre-Training
Pre-training of Graph Augmented Transformers for Medication Recommendation
G-Bert Pre-training of Graph Augmented Transformers for Medication Recommendation Intro G-Bert combined the power of Graph Neural Networks and BERT (B
Code for KDD'20 "Generative Pre-Training of Graph Neural Networks"
GPT-GNN: Generative Pre-Training of Graph Neural Networks GPT-GNN is a pre-training framework to initialize GNNs by generative pre-training. It can be
code for "Self-supervised edge features for improved Graph Neural Network training", arxivlink
Self-supervised edge features for improved Graph Neural Network training Data availability: Here is a link to the raw data for the organoids dataset.
[ICML 2020] DrRepair: Learning to Repair Programs from Error Messages
DrRepair: Learning to Repair Programs from Error Messages This repo provides the source code & data of our paper: Graph-based, Self-Supervised Program
Autoregressive Predictive Coding: An unsupervised autoregressive model for speech representation learning
Autoregressive Predictive Coding This repository contains the official implementation (in PyTorch) of Autoregressive Predictive Coding (APC) proposed
Code and training data for our ECCV 2016 paper on Unsupervised Learning
Shuffle and Learn (Shuffle Tuple) Created by Ishan Misra Based on the ECCV 2016 Paper - "Shuffle and Learn: Unsupervised Learning using Temporal Order
[NeurIPS'20] Self-supervised Co-Training for Video Representation Learning. Tengda Han, Weidi Xie, Andrew Zisserman.
CoCLR: Self-supervised Co-Training for Video Representation Learning This repository contains the implementation of: InfoNCE (MoCo on videos) UberNCE
PyTorch code for training MM-DistillNet for multimodal knowledge distillation
There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge MM-DistillNet is a
AdaFocus V2: End-to-End Training of Spatial Dynamic Networks for Video Recognition
AdaFocusV2 This repo contains the official code and pre-trained models for AdaFo
Deep Learning Training Scripts With Python
Deep Learning Training Scripts DNN Frameworks Caffe PyTorch Tensorflow CNN Models VGG ResNet DenseNet Inception Language Modeling GatedCNN-LM Attentio
Hub is a dataset format with a simple API for creating, storing, and collaborating on AI datasets of any size.
Hub is a dataset format with a simple API for creating, storing, and collaborating on AI datasets of any size. The hub data layout enables rapid transformations and streaming of data while training models at scale. Hub is used by Google, Waymo, Red Cross, Oxford University, and Omdena.
Python package to transfer data in a fast, reliable, and packetized form.
pySerialTransfer Python package to transfer data in a fast, reliable, and packetized form.
Code to use Augmented Shapiro Wilks Stopping, as well as code for the paper "Statistically Signifigant Stopping of Neural Network Training"
This codebase is being actively maintained, please create and issue if you have issues using it Basics All data files are included under losses and ea
Websocket RPC and Pub/Sub for Python applications and microservices
wampy [whomp-ee] For a background as to what WAMP is, please see here. This is a Python implementation of WAMP using Gevent, but you can also configur
A flexible data historian based on InfluxDB, Grafana, MQTT and more. Free, open, simple.
Kotori Telemetry data acquisition and sensor networks for humans. Documentation: https://getkotori.org/ Source Code: https://github.com/daq-tools/koto
PyTorch implementation of Rethinking Positional Encoding in Language Pre-training
TUPE PyTorch implementation of Rethinking Positional Encoding in Language Pre-training. Quickstart Clone this repository. git clone https://github.com
A tiny end-to-end latency testing tool implemented by UDP protocol in Python 📈 .
udp-latency A tiny end-to-end latency testing tool implemented by UDP protocol in Python 📈 . Features Compare with other existing latency testing too
Code release for SLIP Self-supervision meets Language-Image Pre-training
SLIP: Self-supervision meets Language-Image Pre-training What you can find in this repo: Pre-trained models (with ViT-Small, Base, Large) and code to
Turn any live video stream or locally stored video into a dataset of interesting samples for ML training, or any other type of analysis.
Sieve Video Data Collection Example Find samples that are interesting within hours of raw video, for free and completely automatically using Sieve API
Implementation of our paper "DMT: Dynamic Mutual Training for Semi-Supervised Learning"
DMT: Dynamic Mutual Training for Semi-Supervised Learning This repository contains the code for our paper DMT: Dynamic Mutual Training for Semi-Superv
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch
Introduction This is a Python package available on PyPI for NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pyto
ONNX Runtime: cross-platform, high performance ML inferencing and training accelerator
ONNX Runtime is a cross-platform inference and training machine-learning accelerator. ONNX Runtime inference can enable faster customer experiences an
Python SDK for building, training, and deploying ML models
Overview of Kubeflow Fairing Kubeflow Fairing is a Python package that streamlines the process of building, training, and deploying machine learning (
🦆 Better duck-typing with mypy-compatible extensions to Protocol
🦆 Quacks If it walks like a duck and it quacks like a duck, then it must be a duck Thanks to PEP544, Python now has protocols: a way to define duck t
Training deep models using anime, illustration images.
animeface deep models for anime images. Datasets anime-face-dataset Anime faces collected from Getchu.com. Based on Mckinsey666's dataset. 63.6K image
learned_optimization: Training and evaluating learned optimizers in JAX
learned_optimization: Training and evaluating learned optimizers in JAX learned_optimization is a research codebase for training learned optimizers. I
A full pipeline AutoML tool for tabular data
HyperGBM Doc | 中文 We Are Hiring! Dear folks,we are offering challenging opportunities located in Beijing for both professionals and students who are k
Training PyTorch models with differential privacy
Opacus is a library that enables training PyTorch models with differential privacy. It supports training with minimal code changes required on the cli
Official Python implementation of the FuzionCoin protocol
PyFuzc Official Python implementation of the FuzionCoin protocol WARNING: Under construction. Use at your own risk. Some functions may not work. Setup
Codes for building and training the neural network model described in Domain-informed neural networks for interaction localization within astroparticle experiments.
Domain-informed Neural Networks Codes for building and training the neural network model described in Domain-informed neural networks for interaction
On the Complementarity between Pre-Training and Back-Translation for Neural Machine Translation (Findings of EMNLP 2021))
PTvsBT On the Complementarity between Pre-Training and Back-Translation for Neural Machine Translation (Findings of EMNLP 2021) Citation Please cite a
Ensembling Off-the-shelf Models for GAN Training
Vision-aided GAN video (3m) | website | paper Can the collective knowledge from a large bank of pretrained vision models be leveraged to improve GAN t
Fine-grained Post-training for Improving Retrieval-based Dialogue Systems - NAACL 2021
Fine-grained Post-training for Multi-turn Response Selection Implements the model described in the following paper Fine-grained Post-training for Impr
Training and Evaluation Code for Neural Volumes
Neural Volumes This repository contains training and evaluation code for the paper Neural Volumes. The method learns a 3D volumetric representation of
Ensembling Off-the-shelf Models for GAN Training
Data-Efficient GANs with DiffAugment project | paper | datasets | video | slides Generated using only 100 images of Obama, grumpy cats, pandas, the Br
Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition
SEW (Squeezed and Efficient Wav2vec) The repo contains the code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speec