3855 Repositories
Python pytorch-vision-transformers Libraries
A scalable template for PyTorch projects, with examples in Image Segmentation, Object classification, GANs and Reinforcement Learning.
PyTorch Project Template is being sponsored by the following tool; please help to support us by taking a look and signing up to a free trial PyTorch P
PyTorch tutorials and best practices.
Effective PyTorch Table of Contents Part I: PyTorch Fundamentals PyTorch basics Encapsulate your model with Modules Broadcasting the good and the ugly
Pytorch implementations of various Deep NLP models in cs-224n(Stanford Univ)
DeepNLP-models-Pytorch Pytorch implementations of various Deep NLP models in cs-224n(Stanford Univ: NLP with Deep Learning) This is not for Pytorch be
Simple PyTorch Tutorials Zero to ALL!
PyTorchZeroToAll Quick 3~4 day lecture materials for HKUST students. Video Lectures: (RNN TBA) Youtube Bilibili Slides Lecture Slides @GoogleDrive If
PyTorch Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)
pytorch-fcn PyTorch implementation of Fully Convolutional Networks. Requirements pytorch = 0.2.0 torchvision = 0.1.8 fcn = 6.1.5 Pillow scipy tqdm
PyTorch Tutorial for Deep Learning Researchers
This repository provides tutorial code for deep learning researchers to learn PyTorch. In the tutorial, most of the models were implemented with less
An IPython Notebook tutorial on deep learning for natural language processing, including structure prediction.
Table of Contents: Introduction to Torch's Tensor Library Computation Graphs and Automatic Differentiation Deep Learning Building Blocks: Affine maps,
Minimal tutorials for PyTorch
Minimal tutorials for PyTorch adapted from Alec Radford's Theano tutorials. Tensor multiplication Linear Regression Logistic Regression Neural Network
Simple examples to introduce PyTorch
This repository introduces the fundamental concepts of PyTorch through self-contained examples. At its core, PyTorch provides two main features: An n-
C++ Implementation of PyTorch Tutorials for Everyone
C++ Implementation of PyTorch Tutorials for Everyone OS (Compiler)\LibTorch 1.9.0 macOS (clang 10.0, 11.0, 12.0) Linux (gcc 8, 9, 10, 11) Windows (msv
Open source guides/codes for mastering deep learning to deploying deep learning in production in PyTorch, Python, C++ and more.
Deep Learning Materials by Deep Learning Wizard Start Learning Now Please head to www.deeplearningwizard.com to start learning! It is mobile/tablet fr
Deep Learning (with PyTorch)
Deep Learning (with PyTorch) This notebook repository now has a companion website, where all the course material can be found in video and textual for
Interactive deep learning book with multi-framework code, math, and discussions. Adopted at 200 universities.
D2L.ai: Interactive Deep Learning Book with Multi-Framework Code, Math, and Discussions Book website | STAT 157 Course at UC Berkeley | Latest version
A set of examples around pytorch in Vision, Text, Reinforcement Learning, etc.
PyTorch Examples WARNING: if you fork this repo, github actions will run daily on it. To disable this, go to /examples/settings/actions and Disable Ac
PyTorch tutorials.
PyTorch Tutorials All the tutorials are now presented as sphinx style documentation at: https://pytorch.org/tutorials Contributing We use sphinx-galle
pytorch implementation of "Distilling a Neural Network Into a Soft Decision Tree"
Soft-Decision-Tree Soft-Decision-Tree is the pytorch implementation of Distilling a Neural Network Into a Soft Decision Tree, paper recently published
Visualizer for neural network, deep learning, and machine learning models
Netron is a viewer for neural network, deep learning and machine learning models. Netron supports ONNX, TensorFlow Lite, Keras, Caffe, Darknet, ncnn,
Using / reproducing ACD from the paper "Hierarchical interpretations for neural network predictions" 🧠 (ICLR 2019)
Hierarchical neural-net interpretations (ACD) 🧠 Produces hierarchical interpretations for a single prediction made by a pytorch neural network. Offic
Making decision trees competitive with neural networks on CIFAR10, CIFAR100, TinyImagenet200, Imagenet
Neural-Backed Decision Trees · Site · Paper · Blog · Video Alvin Wan, *Lisa Dunlap, *Daniel Ho, Jihan Yin, Scott Lee, Henry Jin, Suzanne Petryk, Sarah
Pytorch Feature Map Extractor
MapExtrackt Convolutional Neural Networks Are Beautiful We all take our eyes for granted, we glance at an object for an instant and our brains can ide
Quickly and easily create / train a custom DeepDream model
Dream-Creator This project aims to simplify the process of creating a custom DeepDream model by using pretrained GoogleNet models and custom image dat
Lucid library adapted for PyTorch
Lucent PyTorch + Lucid = Lucent The wonderful Lucid library adapted for the wonderful PyTorch! Lucent is not affiliated with Lucid or OpenAI's Clarity
Visualization toolkit for neural networks in PyTorch! Demo --
FlashTorch A Python visualization toolkit, built with PyTorch, for neural networks in PyTorch. Neural networks are often described as "black box". The
PyTorch implementation of DeepDream algorithm
neural-dream This is a PyTorch implementation of DeepDream. The code is based on neural-style-pt. Here we DeepDream a photograph of the Golden Gate Br
Pytorch implementation of convolutional neural network visualization techniques
Convolutional Neural Network Visualizations This repository contains a number of convolutional neural network visualization techniques implemented in
Many Class Activation Map methods implemented in Pytorch for CNNs and Vision Transformers. Including Grad-CAM, Grad-CAM++, Score-CAM, Ablation-CAM and XGrad-CAM
Class Activation Map methods implemented in Pytorch pip install grad-cam ⭐ Comprehensive collection of Pixel Attribution methods for Computer Vision.
In this project we will be using the live feed coming from the webcam to create a virtual mouse with complete functionalities.
Virtual Mouse Using OpenCV In this project we will be using the live feed coming from the webcam to create a virtual mouse using hand tracking. Projec
Implementation of the Remixer Block from the Remixer paper, in Pytorch
Remixer - Pytorch Implementation of the Remixer Block from the Remixer paper, in Pytorch. It claims that substituting the feedforwards in transformers
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System
Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System This repository contains the PyTorch im
A simple but complete full-attention transformer with a set of promising experimental features from various papers
x-transformers A concise but fully-featured transformer, complete with a set of promising experimental features from various papers. Install $ pip ins
Implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTorch
Neural Distance Embeddings for Biological Sequences Official implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTo
Code and data to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021
Code and data to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021
PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization using Augmented-Self Reference and Dense Semantic Correspondence) and pre-trained model on ImageNet dataset
Reference-Based-Sketch-Image-Colorization-ImageNet This is a PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization usin
Unofficial Implementation of Zero-Shot Text-to-Speech for Text-Based Insertion in Audio Narration
Zero-Shot Text-to-Speech for Text-Based Insertion in Audio Narration This repo contains only model Implementation of Zero-Shot Text-to-Speech for Text
A Non-Autoregressive Transformer based TTS, supporting a family of SOTA transformers with supervised and unsupervised duration modelings. This project grows with the research community, aiming to achieve the ultimate TTS.
A Non-Autoregressive Transformer based TTS, supporting a family of SOTA transformers with supervised and unsupervised duration modelings. This project grows with the research community, aiming to achieve the ultimate TTS.
ilpyt: imitation learning library with modular, baseline implementations in Pytorch
ilpyt The imitation learning toolbox (ilpyt) contains modular implementations of common deep imitation learning algorithms in PyTorch, with unified in
Hand Gesture Volume Control | Open CV | Computer Vision
Gesture Volume Control Hand Gesture Volume Control | Open CV | Computer Vision Use gesture control to change the volume of a computer. First we look i
Scripts for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation and a convolutional neural network (CNN) for image classification
About subwAI subwAI - a project for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation
A Closer Look at Structured Pruning for Neural Network Compression
A Closer Look at Structured Pruning for Neural Network Compression Code used to reproduce experiments in https://arxiv.org/abs/1810.04622. To prune, w
PyTorch Implementation of [1611.06440] Pruning Convolutional Neural Networks for Resource Efficient Inference
PyTorch implementation of [1611.06440 Pruning Convolutional Neural Networks for Resource Efficient Inference] This demonstrates pruning a VGG16 based
Official implementations of EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis.
EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis This repo contains the official implementations of EigenDamage: Structured Prunin
Distiller is an open-source Python package for neural network compression research.
Wiki and tutorials | Documentation | Getting Started | Algorithms | Design | FAQ Distiller is an open-source Python package for neural network compres
A PyTorch implementation of Learning to learn by gradient descent by gradient descent
Intro PyTorch implementation of Learning to learn by gradient descent by gradient descent. Run python main.py TODO Initial implementation Toy data LST
OptNet: Differentiable Optimization as a Layer in Neural Networks
OptNet: Differentiable Optimization as a Layer in Neural Networks This repository is by Brandon Amos and J. Zico Kolter and contains the PyTorch sourc
A PyTorch implementation of L-BFGS.
PyTorch-LBFGS: A PyTorch Implementation of L-BFGS Authors: Hao-Jun Michael Shi (Northwestern University) and Dheevatsa Mudigere (Facebook) What is it?
Riemannian Adaptive Optimization Methods with pytorch optim
geoopt Manifold aware pytorch.optim. Unofficial implementation for “Riemannian Adaptive Optimization Methods” ICLR2019 and more. Installation Make sur
lookahead optimizer (Lookahead Optimizer: k steps forward, 1 step back) for pytorch
lookahead optimizer for pytorch PyTorch implement of Lookahead Optimizer: k steps forward, 1 step back Usage: base_opt = torch.optim.Adam(model.parame
functorch is a prototype of JAX-like composable function transforms for PyTorch.
functorch is a prototype of JAX-like composable function transforms for PyTorch.
docTR by Mindee (Document Text Recognition) - a seamless, high-performing & accessible library for OCR-related tasks powered by Deep Learning.
docTR by Mindee (Document Text Recognition) - a seamless, high-performing & accessible library for OCR-related tasks powered by Deep Learning.
This repository contains an overview of important follow-up works based on the original Vision Transformer (ViT) by Google.
This repository contains an overview of important follow-up works based on the original Vision Transformer (ViT) by Google.
GluonMM is a library of transformer models for computer vision and multi-modality research
GluonMM is a library of transformer models for computer vision and multi-modality research. It contains reference implementations of widely adopted baseline models and also research work from Amazon Research.
Pytorch Geometric Tutorials
Pytorch Geometric Tutorials
Bunch of optimizer implementations in PyTorch
Bunch of optimizer implementations in PyTorch
Dense Deep Unfolding Network with 3D-CNN Prior for Snapshot Compressive Imaging, ICCV2021 [PyTorch Code]
Dense Deep Unfolding Network with 3D-CNN Prior for Snapshot Compressive Imaging, ICCV2021 [PyTorch Code]
Code and data form the paper BERT Got a Date: Introducing Transformers to Temporal Tagging
BERT Got a Date: Introducing Transformers to Temporal Tagging Satya Almasian*, Dennis Aumiller*, and Michael Gertz Heidelberg University Contact us vi
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".
RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo
PyTorch implementation of Glow
glow-pytorch PyTorch implementation of Glow, Generative Flow with Invertible 1x1 Convolutions (https://arxiv.org/abs/1807.03039) Usage: python train.p
PyTorch implementation of SIFT descriptor
This is an differentiable pytorch implementation of SIFT patch descriptor. It is very slow for describing one patch, but quite fast for batch. It can
Unofficial PyTorch implementation of Google AI's VoiceFilter system
VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour
GPU-accelerated PyTorch implementation of Zero-shot User Intent Detection via Capsule Neural Networks
GPU-accelerated PyTorch implementation of Zero-shot User Intent Detection via Capsule Neural Networks This repository implements a capsule model Inten
ppo_pytorch_cpp - an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch
PPO Pytorch C++ This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment t
A Pytorch implementation of "Splitter: Learning Node Representations that Capture Multiple Social Contexts" (WWW 2019).
Splitter ⠀⠀ A PyTorch implementation of Splitter: Learning Node Representations that Capture Multiple Social Contexts (WWW 2019). Abstract Recent inte
Simple Text-Generator with OpenAI gpt-2 Pytorch Implementation
GPT2-Pytorch with Text-Generator Better Language Models and Their Implications Our model, called GPT-2 (a successor to GPT), was trained simply to pre
PyTorch original implementation of Cross-lingual Language Model Pretraining.
XLM NEW: Added XLM-R model. PyTorch original implementation of Cross-lingual Language Model Pretraining. Includes: Monolingual language model pretrain
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context Code in both PyTorch and TensorFlow
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context This repository contains the code in both PyTorch and TensorFlow for our paper
A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis
WaveGlow A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis Quick Start: Install requirements: pip install
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.
English | 简体中文 | 繁體中文 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained mo
PyTorch Language Model for 1-Billion Word (LM1B / GBW) Dataset
PyTorch Large-Scale Language Model A Large-Scale PyTorch Language Model trained on the 1-Billion Word (LM1B) / (GBW) dataset Latest Results 39.98 Perp
Pervasive Attention: 2D Convolutional Networks for Sequence-to-Sequence Prediction
This is a fork of Fairseq(-py) with implementations of the following models: Pervasive Attention - 2D Convolutional Neural Networks for Sequence-to-Se
A Fast Sequence Transducer Implementation with PyTorch Bindings
transducer A Fast Sequence Transducer Implementation with PyTorch Bindings. The corresponding publication is Sequence Transduction with Recurrent Neur
A Structured Self-attentive Sentence Embedding
Structured Self-attentive sentence embeddings Implementation for the paper A Structured Self-Attentive Sentence Embedding, which was published in ICLR
Implements pytorch code for the Accelerated SGD algorithm.
AccSGD This is the code associated with Accelerated SGD algorithm used in the paper On the insufficiency of existing momentum schemes for Stochastic O
Tacotron 2 - PyTorch implementation with faster-than-realtime inference
Tacotron 2 (without wavenet) PyTorch implementation of Natural TTS Synthesis By Conditioning Wavenet On Mel Spectrogram Predictions. This implementati
PyTorch implementation of convolutional neural networks-based text-to-speech synthesis models
Deepvoice3_pytorch PyTorch implementation of convolutional networks-based text-to-speech synthesis models: arXiv:1710.07654: Deep Voice 3: Scaling Tex
PyTorch Implementation of "Non-Autoregressive Neural Machine Translation"
Non-Autoregressive Transformer Code release for Non-Autoregressive Neural Machine Translation by Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K.
PyTorch implementation of the NIPS-17 paper "Poincaré Embeddings for Learning Hierarchical Representations"
Poincaré Embeddings for Learning Hierarchical Representations PyTorch implementation of Poincaré Embeddings for Learning Hierarchical Representations
Wind Speed Prediction using LSTMs in PyTorch
Implementation of Deep-Forecast using PyTorch Deep Forecast: Deep Learning-based Spatio-Temporal Forecasting Adapted from original implementation Setu
pytorch implementation of Attention is all you need
A Pytorch Implementation of the Transformer: Attention Is All You Need Our implementation is largely based on Tensorflow implementation Requirements N
StarGAN - Official PyTorch Implementation (CVPR 2018)
StarGAN - Official PyTorch Implementation ***** New: StarGAN v2 is available at https://github.com/clovaai/stargan-v2 ***** This repository provides t
A Pytorch Implementation for Compact Bilinear Pooling.
CompactBilinearPooling-Pytorch A Pytorch Implementation for Compact Bilinear Pooling. Adapted from tensorflow_compact_bilinear_pooling Prerequisites I
Compact Bilinear Pooling for PyTorch
Compact Bilinear Pooling for PyTorch. This repository has a pure Python implementation of Compact Bilinear Pooling and Count Sketch for PyTorch. This
Skipgram Negative Sampling in PyTorch
PyTorch SGNS Word2Vec's SkipGramNegativeSampling in Python. Yet another but quite general negative sampling loss implemented in PyTorch. It can be use
PyTorch implementation of Tacotron speech synthesis model.
tacotron_pytorch PyTorch implementation of Tacotron speech synthesis model. Inspired from keithito/tacotron. Currently not as much good speech quality
Pytorch implementation of winner from VQA Chllange Workshop in CVPR'17
2017 VQA Challenge Winner (CVPR'17 Workshop) pytorch implementation of Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challeng
Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286
Pytorch-DPPO Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286 Using PPO with clip loss (from https
The PASS dataset: pretrained models and how to get the data - PASS: Pictures without humAns for Self-Supervised Pretraining
The PASS dataset: pretrained models and how to get the data - PASS: Pictures without humAns for Self-Supervised Pretraining
PyTorch implementations of normalizing flow and its variants.
PyTorch implementations of normalizing flow and its variants.
Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.
Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.
Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple
Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple
这是一个deeplabv3-plus-pytorch的源码,可以用于训练自己的模型。
DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download 训练步骤
[ICCV-2021] An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation
An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation (ICCV 2021) Introduction This is an official pytorch implemen
Tevatron is a simple and efficient toolkit for training and running dense retrievers with deep language models.
Tevatron Tevatron is a simple and efficient toolkit for training and running dense retrievers with deep language models. The toolkit has a modularized
Dynamic Attentive Graph Learning for Image Restoration, ICCV2021 [PyTorch Code]
Dynamic Attentive Graph Learning for Image Restoration This repository is for GATIR introduced in the following paper: Chong Mou, Jian Zhang, Zhuoyuan
Sequence-to-Sequence learning using PyTorch
Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train
A PyTorch implementation of the Transformer model in "Attention is All You Need".
Attention is all you need: A Pytorch Implementation This is a PyTorch implementation of the Transformer model in "Attention is All You Need" (Ashish V
Intent parsing and slot filling in PyTorch with seq2seq + attention
PyTorch Seq2Seq Intent Parsing Reframing intent parsing as a human - machine translation task. Work in progress successor to torch-seq2seq-intent-pars
pytorch implementation for PointNet
PointNet.pytorch This repo is implementation for PointNet in pytorch. The model is in pointnet/model.py. It is teste
DeepLab resnet v2 model in pytorch
pytorch-deeplab-resnet DeepLab resnet v2 model implementation in pytorch. The architecture of deepLab-ResNet has been replicated exactly as it is from
Pytorch implementation of Value Iteration Networks (NIPS 2016 best paper)
VIN: Value Iteration Networks A quick thank you A few others have released amazing related work which helped inspire and improve my own implementation
PyTorch implementation of Advantage async actor-critic Algorithms (A3C) in PyTorch
Advantage async actor-critic Algorithms (A3C) in PyTorch @inproceedings{mnih2016asynchronous, title={Asynchronous methods for deep reinforcement lea